

UNIVERSITE D'ANTANANARIVO FACULTE DES SCIENCES DEPARTEMENT DE BIOLOGIE ET ECOLOGIE VEGETALES

Mémoire pour l'obtention de Diplôme d'Etudes Approfondies en Biologie et Ecologie Végétales Option : Palynologie Appliquée

Analyses polliniques des miels de Madagascar et de deux îles des Mascareignes (île de la Réunion - île Rodrigues)

Présenté par : Tsiory Mampionona RASOLOARIJAO

Maitrise ès Sciences

Soutenu le 28 Mars 2013

Devant le comité d'examen composé de :

Pr RAMAVOVOLOLONA	Président
Dr RAMAMONJISOA RALALAHARISOA	Rapporteur
Dr PORPHYRE Vincent	Examinateur
Dr RAHARIMALALA Fidèle	Examinateur

PHOTOS DE LA PAGE DE COUVERTURE :

- 1 : Litchi sinensis en fleurs
- 2 : *Macaranga obovata* en fruits
- **3** : Eucalyptus camaldulensis
- ${\bf 4}: Schinus\ terebenthifolius$
- 5 : Fleur d'Adansonia grandidieri (RASOAMANANA, 2008)
- 6 : Apis mellifera var unicolor L. sur la fleur de Litchi sinensis
- 7: Tamarindus indica
- 8 : Rayon de miel operculé
- 9 : Un pot de miel de litchi
- 10 : Pollens dans le miel vus au microscope

Remerciements

Ce travail est le fruit d'une collaboration entre le Département Biologie et Ecologie Végétales de la Faculté des Sciences (DBEV), de l'Université d'Antananarivo et le Réseau scientifique et technique des pays de l'Océan Indien en agroalimentaire (QualiREG) qui a bien voulu financer ce travail.

Nous tenons à montrer notre gratitude à toutes les personnes, qui de près ou de loin, ont apporté leur aide, leur soutien et leur collaboration à la réalisation de ce mémoire.

Professeur RAMAVOVOLOLONA, Responsable de la formation en Palynologie Appliquée et Responsable de la formation doctorale du Département de Biologie et Ecologie Végétales à la Faculté des Sciences de l'Université d'Antananarivo, qui après avoir consacré du temps pour lire ce mémoire nous a donné des conseils et des critiques pertinentes et constructives, nous a fait l'honneur d'accepter la présidence du jury de notre mémoire. Veuillez trouver ici, Madame le Professeur, l'expression de notre profonde gratitude.

Docteur RAMAMONJISOA RALALAHARISOA, Maître de Conférences, Responsable du laboratoire de Palynologie du Département de Biologie et Ecologie Végétales à la Faculté des Sciences d'Antananarivo, notre encadreur qui a montré dévouement et patience durant l'accomplissement de ce travail ainsi que pour ses aides précieuses et ses conseils. Nous sommes profondément reconnaissant de votre ferme soutien.

Docteur PORPHYRE Vincent, Coordinateur du réseau QualiReg et Chercheur au sein du CIRAD de la Réunion, qui nous a accordé sa confiance pour réaliser cette étude. Il nous fait également un grand honneur d'avoir accepté de lire nos résultats de recherche et de siéger parmi les membres du jury malgré ses nombreuses occupations et l'éloignement de nos deux îles. Qu'il veuille agréer l'expression de nos profonds remerciements.

Docteur RAHARIMALALA Fidèle, Maître de Conférences, Enseignant Chercheur au sein du Département de Biologie et Ecologie Végétales à la Faculté des Sciences de l'Université d'Antananarivo qui, malgré ses nombreuses occupations, a bien voulu apporter ses compétences et accepter d'examiner ce mémoire. Nous lui adressons notre profonde gratitude.

Nos hommages également à tous les Enseignants du Département de Biologie et Ecologie Végétales, Faculté des Sciences de l'Université d'Antananarivo, qui en dispensant et en partageant leurs savoirs ont fortement contribué à enrichir nos connaissances et notre approche de la recherche.

Une grande reconnaissance à tout le personnel technique et administratif et les étudiants du Département de Biologie et Ecologie Végétales de la Faculté des Sciences de L'Université d'Antananarivo.

Mes remerciements à tous les étudiants de Palynologie et tous ceux de la promotion « Tahirin'ala », pour leur soutien et l'aimable attention dont ils nous ont fait part.

Enfin et non des moindres, un grand merci à tous les membres de ma famille auxquels je dédie ce livre pour leur amour, encouragement et soutien permanents depuis toujours et pour toujours.

Un grand merci à TOUS!

Table des matières

Liste de	es figures	V
Liste de	es tableaux	V
Liste de	es photos	v i
Liste de	es cartes	v
	es annexes	
Glossai	re	vi
Acrony	mes	vi
INTRO	DUCTION	
Chapitr	e I. GENERALITES	
I. LE	S CARACTERISTIQUES DU MILIEU MALGACHE ET DES ILES MASCAREIGNES	4
1.1	Localisation géographique	4
1.2	Climat	4
1.3	Géologie et sols	4
1.4	Végétation et flore	7
II. LE	CONTEXTE APICOLE	7
II.1	L'abeille	7
11.2	L'apiculture	8
11.3	Les miels	8
Chapitr	e II. MATERIELS et METHODES	
I. LE	MATERIEL D'ETUDE	10
II. M	ETHODES ET TECHNIQUES	11
II. 1	Les traitements physico-chimiques des miels	11
11.2	Montage des préparations	13
11.3	La conduite de l'analyse pollinique	13
A.	Analyse qualitative	13
В.	Analyse quantitative	16
11.4	Analyses statistiques des résultats	19
Chapitr	e III. RESULTATS et INTERPRETATIONS	
PRESEN	ITATION DES RESULTATS	21
I RF	SUITATS DE L'ENSEMBLE DES ANALYSES	21

II.	RES	ULTATS PAR PAYS ET PAR TYPES DE MIELS	22
I	I.1	Résultats de l'analyse des miels de Madagascar	22
	A.	Miels présumés de litchi	22
	В.	Miels présumés de baobab	27
I	1.2	Résultats de l'analyse des miels de la Réunion	31
	A.	Miels présumés de litchi	31
	В.	Miels présumés d'eucalyptus	34
I	1.3	Résultats de l'analyse des miels de Rodrigues	36
	A.	Miels présumés d'acacia	36
	В.	Miels présumés d'eucalyptus	38
	C.	Miels présumés de « mille fleurs »	43
	D.	Miel présumé de tamarin	46
III.	RES	ULTATS DE L'ANALYSE STATISTIQUE	48
I	II.1	Analyse factorielle des correspondances (AFC)	48
I	II.2	Classification ascendante hiérarchique (CAH)	50
IV.	DES	CRIPTIONS DES DIFFERENTS TYPES DE MIELS	52
I	V.1	LES MIELS MONOFLORAUX	52
I	V.2	LES MIELS POLYFLORAUX OU MILLE FLEURS	56
I	V.3	DESCRIPTION DES PRINCIPAUX TYPES POLLINIQUES RENCONTRES	58
Cha	apitre	IV : DISCUSSION DES RESULTATS	
l.	LIM	ITE DE LA METHODOLOGIE UTILISEE	69
ı	.1	VERIFICATION DES NOMS COMMERCIAUX DES MIELS	69
ı	.2	AUTHENTIFICATION DES MIELS	70
	A.	LES MIELS MONOFLORAUX	70
	В.	LES MIELS POLYFLORAUX OU MILLE FLEURS	72
II.	LES	INDICATEURS DE L'ORIGINE GEOGRAPHIQUE	72
со	NCLU	SION	

BIBLIOGRAPHIE

ANNEXES

Liste des figures

Figure 1: Traitement physico-chimique des miels	12
Figure 2: Les différentes lignes du comptage	14
Figure 3: Fréquence d'apparition des taxons dans les miels de litchi malgaches	26
Figure 4: Fréquence d'apparition des taxons dans les miels de baobab malgaches	30
Figure 5: Fréquence d'apparition des taxons dans les miels de litchi de Réunion	34
Figure 6: Fréquence d'apparition des taxons dans les miels d'eucalyptus de Rodrigues	42
Figure 7: Fréquence d'apparition des taxons dans les miels de mille fleurs de Rodrigues	45
Figure 8: Représentation graphique de l'AFC des miels de l'Océan Indien	49
Figure 9: Dendrogramme des échantillons de miels étudiés (CAH)	51
Figure 10: Diagramme pollinique de l'échantillon MG013 : miel de litchi	52
Figure 11: Diagramme pollinique de l'échantillon R094 : miel de litchi	53
Figure 12: Diagramme pollinique de l'échantillon MG005 : miel de macaranga	53
Figure 13: Diagramme pollinique de l'échantillon MG026 : miel d'eucalyptus	54
Figure 14: Diagramme pollinique de l'échantillon R028 : miel de schinus	55
Figure 15: Diagramme pollinique de l'échantillon RD033 : miel de tamarin	55
Figure 16: Diagramme pollinique de l'échantillon RD013 : miel mille fleurs	56
Figure 17: Diagramme pollinique de l'échantillon MG033 : miel de baobab	57
Liste des tableaux	
Tableau 1: Données générales sur les pays concernés par l'étude	6
Tableau 2 : Spectre pollinique de l'échantillon MG004	
Tableau 3: Spectres polliniques des miels de litchi de Madagascar	
Tableau 4: Classification des pollens des miels de litchi de Madagascar par catégorie	
Tableau 5: Résultats de l'analyse quantitative des miels de litchi de Madagascar	
Tableau 6: Spectres polliniques des miels de baobab de Madagascar	
Tableau 7: Classification des pollens des miels de baobab de Madagascar par catégorie	29
Tableau 8 : Résultats de l'analyse quantitative des miels de baobab	30
Tableau 9: Spectres polliniques des miels de litchi de Réunion	32
Tableau 10: Classification des pollens des miels de litchi de la Réunion par catégorie	33
Tableau 11 : Résultats des analyses quantitatives pour les miels de litchi de Réunion	33
Tableau 12: Spectre pollinique de l'échantillon de miel d'eucalyptus de Réunion (R028)	35
Tableau 13: Classification des pollens du miel présumé d'eucalyptus de la Réunion par catégorie	35
Tableau 14: Spectres polliniques des miels d'acacia de Rodrigues	36
Tableau 15: Classification des pollens des miels d'acacia de Rodrigues par catégorie	37
Tableau 16: Spectres polliniques des miels d'eucalyptus de Rodrigues	39
Tableau 17: Classification des pollens des miels d'eucalyptus de Rodrigues par catégorie	41
Tableau 18 : Résultats des analyses quantitatives pour les miels d'eucalyptus de Rodrigues	42
Tableau 19: Spectres polliniques des miels de mille fleurs de Rodrigues	43
Tableau 20: Classification des pollens des miels de mille fleurs de Rodrigues par catégorie	44
Tableau 21 : Résultats des analyses quantitatives pour les miels de mille fleurs de Rodrigues	45
Tableau 22: Spectre pollinique du miel de tamarin de Rodrigues (RD031)	46
Tableau 23: Classification des pollens du miel de tamarin de Rodrigues par catégorie	47

Liste des	photos	
_		

Liste des photos	
Photo 1: Champ de miel de litchi (MG013)	52
Photo 2: Champ de miel de litchi R094	53
Photo 3: Champ de miel de macaranga MG005	53
Photo 4: Champ de miel d'eucalyptus MG026	54
Photo 5: Champ de miel de schinus R028	55
Photo 6: Champ de miel de tamarin RD033	55
Photo 7: Champ de miel mille fleurs RD013	56
Photo 8: Champ de miel de baobab MG033	57
Liste des cartes	
Carte 1: Carte de localisation de Madagascar et des îles Mascareignes (Fond de carte : G	Google Earth).
	5
Liste des annexes	
ANNEXE I: Calendrier des récoltes de miels	82
ANNEXE II : Liste de principales espèces mellifères avec noms latins et vernaculaire class	sées par ordre
alphabétique	83
ANNEXE III: Mesure volumétrique du culot	84
ANNEXE IV: Préparation des montages	85
ANNEXE V: Terminologie de la palynologie (Punt & al en 1994)	87
ANNEXE VI: Liste des taxons rencontrés	90

GLOSSAIRE

Acétolyse (ERDTMAN, 1960) : traitement consistant en une fossilisation artificielle des grains de pollens.

Arôme: substances aromatiques dans le miel.

Mélissopalynologie : Etude des grains de pollen et des spores contenus dans les produits de la ruche.

Miel monofloral : Miel obtenu par un butinage intensif des fleurs d'une espèce donnée qui est à l'origine principale du nectar.

Miel polyfloral ou miel mille fleurs : Miel obtenu lors d'un butinage de fleurs de plusieurs plantes.

Nectar : liquide sucré sécrété par des glandes de plantes appelées les nectaires, situées dans les fleurs (nectaires floraux) ou ailleurs (nectaires extra floraux).

Origine florale : source principale de nectar d'un miel qui présente les propriétés organoleptiques, physico-chimiques et microscopiques correspondant à ladite origine.

Pollen : gamétophyte mâle des plantes à fleurs produit par les anthères ; il est collecté et utilisé par les abeilles comme source de protéines.

Rucher: endroit où sont installées les ruches.

ACRONYMES

AFC: Analyse Factorielle des Correspondances.

A.P.L.F.: Association des Palynologues de la Langue Française.

CAH: Classification Ascendante Hiérarchique.

QualiREG: Réseau scientifique et technique des pays de l'Océan Indien en agroalimentaire.

SPIR : Spectrométrie en Proche InfraRouge.

INTRODUCTION

Le miel est un produit commercial de consommation courante qui possède aussi une valeur culturelle auprès des populations. Les miels commerciaux sont généralement produits par l'abeille domestique *Apis mellifera* L. L'aire de répartition naturelle de cette abeille s'étend de l'Europe à l'Asie et en Afrique avec 24 sous-espèces distinctes (KAUHAUSEN-KELLER & al, 1997). La sous-espèce *Apis mellifera* var. *unicolor* est l'abeille native de Madagascar et des Iles des Mascareignes (CRANE, 1990).

Les miels produits au niveau des différentes iles de l'Océan Indien portent des noms différents attribués par les apiculteurs. Il existe des miels produits à partir d'espèces exotiques tels que les miels de litchi et les miels d'eucalyptus. Des miels portant le nom de miels de mille fleurs ou de ceux d'espèces emblématiques tels que les miels de baobab de Madagascar. Certains de ces miels du point de vue gustatif, diététique ou culturel peuvent donner lieu à des labels. Donner un nom au miel est une forme de valorisation mais ce nom doit être authentique, c'est-à-dire exprimant l'origine principale du nectar ou reflétant l'originalité géographique. Une bonne connaissance des types de miels constitue la base essentielle d'une commercialisation rationnelle. La définition des miels monofloraux en particulier reste difficile ; classiquement, elle est basée sur l'utilisation d'un ensemble d'analyses portant sur les caractéristiques polliniques, les propriétés physico-chimiques et les propriétés organoleptiques.

Mettre des produits inédits et conformes aux normes sur les marchés nationaux et internationaux apparaît de plus en plus comme un défi actuellement. QualiREG, réseau scientifique et technique des pays de l'Océan Indien en agroalimentaire se propose de mettre au point une technique rapide et fiable, l'analyse SPIR (Spectre Proche InfraRouge) pour caractériser les miels de ces îles. Il est nécessaire de s'assurer de l'identité des miels de référence qui seront utilisés dans l'établissement d'une base de données. Les informations scientifiques concernant les miels des iles de l'Océan Indien sont peu nombreuses. Des analyses polliniques ont été effectuées sur des miels de différentes régions de Madagascar (RAHARIMBOLA, 2001; RALIMANANA, 1994; RAMAMONJISOA& al, 1996; RANDRIANARIVELO, 2010; RAZAFINDRAKOTO, 2005).

Des analyses polliniques, physico-chimiques et sensorielles ont été effectuées sur des miels de l'île de la Réunion (SCHWEITZER, 2011). L'analyse pollinique des miels ou mélissopalynologie est une méthode qui permet de vérifier l'origine florale et de déterminer la provenance géographique des miels par analyse microscopique des types de pollen qu'ils contiennent (LOW et *al*, 1989 ; BATTESTI et GOEURY, 1992).

En vue d'obtenir des données sur les caractères polliniques de miels en provenance de Madagascar, de l'ile la Réunion et de l'ile Rodrigues, la présente étude intitulée : «Analyses polliniques des miels de Madagascar et de deux îles des Mascareignes (île de la Réunion – île Rodrigues)» a été initiée lors d'une collaboration entre le Réseau QualiREG et le laboratoire de Palynologie appliquée de l'Université de Tananarive. L'objectif de cette étude a été d'établir les profils polliniques et d'effectuer une typologie des miels des différentes îles de l'Océan Indien. A partir de cette technique, cette recherche se propose de vérifier :

- si des miels monofloraux sont produits dans les différentes îles et s'ils correspondent aux noms commerciaux attribués ;
- si les miels des îles de l'Océan Indien possèdent des caractéristiques spécifiques qui les différencient des miels d'autres pays ou d'autres régions ;
- et si les miels de même appellation dans les différentes îles ont les mêmes caractéristiques ou présentent des différences.

Quatre parties seront développées dans ce mémoire :

- La première partie concerne les généralités qui donnent une brève description des caractéristiques des trois iles concernées et du contexte apicole ;
- La deuxième partie est une description du matériel d'étude et des méthodes utilisées :
- La troisième partie porte sur la présentation des résultats obtenus et leur interprétation avec la typologie des miels ;
- La quatrième partie est une discussion des résultats et des limites de l'interprétation.

Chapitre I. GENERALITES

L'abeille retire du milieu qui l'entoure tout ce dont elle a besoin, tel que le pollen, le nectar et l'eau, ainsi les miels qu'elle produit reflète les conditions écologiques des lieux où se trouve la ruche. Toutefois, la qualité des miels dépend étroitement du contexte apicole et du savoir-faire de l'apiculteur. Ce chapitre porte sur des généralités sur les milieux où les miels étudiés ont été produits et sur les caractères de l'apiculture. La présente étude couvre trois îles de l'Océan Indien occidental : Madagascar et deux des îles des Mascareignes, l'ile de la Réunion et l'île de Rodrigues.

I. LES CARACTERISTIQUES DU MILIEU MALGACHE ET DES ILES MASCAREIGNES

Madagascar et les Mascareignes (Carte 1) font partie des 25 hotspots de Biodiversité identifiés comme prioritaires pour la conservation des espèces (MYERS *et al*, 2000) et où la flore et la végétation ont subi une forte empreinte humaine. Le tableau 1 présente les données générales sur les pays concernés par l'étude.

I.1 Localisation géographique


Madagascar, l'île de la Réunion et l'île de Rodrigues se trouvent à l'est du continent africain entre 47°00' et 63°20 de longitude est et 20°00' et 19°46' de latitude sud. Chaque île présente une chaine montagneuse délimitant une région au vent et une région sous le vent, ce qui influence le climat et la végétation.

I.2 Climat

Le climat des trois îles considérées est du type tropical et sous l'influence de l'alizé. Deux saisons se succèdent : la saison chaude et humide, de novembre à avril et la saison sèche et fraîche de mai à octobre.

I.3 Géologie et sols

Madagascar est une île continentale séparée de l'Afrique au Crétacé alors que la Réunion et l'île de Rodrigues sont des îles volcaniques émergées des fonds océaniques respectivement il y a 8 millions d'années et 1,5 millions d'années ; ainsi Madagascar présente une forte variété de sols alors que les autres îles possèdent surtout des sols volcaniques.

Carte 1: Carte de localisation de Madagascar et des îles Mascareignes (Fond de carte : Google Earth).

Tableau 1: Données générales sur les pays concernés par l'étude (HUMBERT, 1955 ; GIRARD & SIGALA, 1991 ; BELMIN, 2010).

	Madagascar	Réunion	Rodrigues
Données géographique	- 47°00' est et 20°00' sud	- 55°29' est et 21°53' sud	- 63°20' est et 19°46' sud
Donnees geograpmque	- Superficie: 587 000 km ²	- Superficie : 2 512 km ²	- Superficie: 108 km ²
Géologie et sols	 Types de sols : Sols ferralitiques (côte est, Hautes terres centrales) Sols ferrugineux tropicaux (ouest, sud-ouest) Sols minéraux bruts et peu évolués (Hauts plateaux, l'ouest Sols calcimorphes (nord, ouest) Sols hydromorphes (est) 	Types de sols : sols volcaniques avec une forte hétérogénéité	Types de sols : sols volcaniques
Climat	Type: tropical humide sous l'influence des vents alizés et de la mousson Deux saisons: - saison sèche (mai à octobre) - saison pluvieuse (novembre à avril)	Type: tropical humide sous l'influence des vents alizés Deux saisons: - saison sèche (mai à octobre) - saison pluvieuse (novembre à avril)	Type: tropical humide sous l'influence des vents alizés Deux saisons: - saison sèche (mai à octobre) saison pluvieuse (novembre à avri
Végétation	Formations primaires: - Forêts denses humides sempervirents de l'est - Forêts denses sèches caducifoliées de l'ouest - Fourrés (sud-ouest) Formations secondaires (63% de l'île): - Forêts secondaires ou Savoka - Savanes - Steppe	Formations primaires: - Forêt sèche hétérogène de basse altitude - Forêt humide hétérogène de basse altitude - Forêt humide hétérogène de moyenne altitude - Forêt de piedmont des cirques sous le vent - Formations végétales de montagne - Végétation éricoïde d'altitude Formation secondaire: - Savanes (régions sèches) - Fourrés	Formations végétales primaires dégradés Formations secondaires: - Forêts secondaires - Savanes

I.4 Végétation et flore

Madagascar et les îles Mascareignes ne présentent actuellement que 10% de leur végétation primaire avec 12 000 espèces de plantes dont 3,2% endémiques (MAUNDER et *al*, 2002).

Les principales formations végétales de Madagascar comprennent les forêts denses humides sempervirentes de l'est, les formations forestières d'altitudes, les forêts denses sèches caducifoliées de l'ouest et les fourrés du sud-ouest (HUMBERT, 1955).

Pour l'île de la Réunion, on rencontre les forêts sèches hétérogènes de basse altitude, les forêts humides hétérogènes, les forêts de piedmont des cirques sous le vent et les formations végétales de montagne (GIRARD & SIGALA, 1991).

La végétation de l'île Rodrigues est très dégradée à cause des activités anthropiques (BELMIN, 2010).

De nombreuses espèces introduites, d'intérêts sylvicole et ornementale tels qu'*Eucalyptus* spp (eucalyptus), *Schinus terebenthifolius* (baie rose) ou *Casuarina equisetifolia* (casuarina), à importance économique tel que l'*Eugenia aromatica* (giroflier) ou agricole comme le *Litchi sinensis* (litchi) et de nombreux autres arbres fruitiers forment des groupements végétaux qui marquent beaucoup la physionomie des différents pays.

La diversité des espèces et des écosystèmes signifient qu'une grande variété de plantes est disponible en vue de différents projets dont l'apiculture.

II. LE CONTEXTE APICOLE

II.1 L'abeille

L'abeille *Apis mellifera* var. *unicolor* est la sous-espèce d'abeille endémique de Madagascar et des Mascareignes. Elle est caractérisée par une couleur foncée uniforme et présente une faible pilosité sur tout le corps (RUTTNER, 1975). Les ouvrières de cette variété d'abeille sont parmi les plus petites du genre alors qu'au contraire le mâle a relativement grandes dimensions (RUTTNER, 1987).

D'après Rodrigues Regional Assembly (2006), une race italienne (*A. m. ligustica*) a été introduite à Rodrigues par le ministère de l'AgroIndustrie de Maurice en 1981.

D'après une communication orale, à la Réunion une race d'abeille *A. m. carnica* a été introduite pour améliorer la productivité.

II.2 L'apiculture

L'apiculture à Madagascar comme dans les îles de Mascareignes est une activité traditionnelle. L'apicueillette ou récolte de miels à partir des essaims sauvages et l'apiculture traditionnelle subsistent surtout à Madagascar. L'apiculture dite améliorée, utilisant la ruche à barrettes, est une des formes d'apiculture utilisée à Madagascar ainsi qu'à Rodrigues. L'apiculture moderne à cadres de type Langstroth ou Dadant est employée couramment à la Réunion et elle est aussi pratiquée par des apiculteurs de Madagascar et de Rodrigues. (ANDRIANARIVELO, 1998 ; MARECHAL & MÉTAS, 2008 ; BELMIN, 2010)

II.3 Les miels

Pour Madagascar, les miels sont vendus sous différentes appellations dont les miels d'eucalyptus, le miel de litchi, le miel de niaouli, le miel de palissandre, le miel de jujubier et le miel de mille fleurs (tableau 1, Annexe I).

A la Réunion, la majorité de la production est constituée par du miel de baie rose (faux poivrier) correspondant à 80% de la production suivi du miel de litchi soit 15% de la production. Le reste comprend le miel vert (*Weinmannia tinctoria*), le miel de forêt de raisin marron (*Rubus alceaefolius*), le miel de forêt de jambrosat (*Syzygium jambos*) et des miels toutes fleurs. (tableau 2, Annexe I) (MARECHAL & MÉTAS, 2008).

A Rodrigues, la nature du miel dépend généralement des zones de production. Dans les zones côtières les miels seraient produits des miels de *Pongamia glabra* (Fabaceae) et d'*Eucalyptus tereticornis* (Myrtaceae). Dans la zone centrale, la flore mellifère serait diversifiée et donne lieu à divers types de miels. (tableau 3, Annexe I) (BELMIN, 2010).

Le tableau 1 de l'annexe II montre les espèces mellifères majeures rencontrées dans les trois îles avec leurs noms latins et leurs noms vernaculaires d'après la bibliographie.

Chapitre II. MATERIELS et METHODES

I. LE MATERIEL D'ETUDE

59 échantillons ont été fournis par le réseau QualiREG :

- 20 échantillons de miels de Madagascar,
- 8 miels de l'île de la Réunion,
- 31 miels de l'île Rodrigues.

Le tableau 2 indique les références des différents échantillons, le pays producteur et l'appellation botanique. Les miels ont été récoltés entre 2010 et 2011. Il est à noter que les lieux de récolte des miels n'ont pas été indiqués.

Tableau 2: Liste des miels analysés

Description Echantillon	Pays	Pays Appellation botanique Echantillon		Pays	Appellation botanique
MG001	Madagascar	baobab	RD033	Rodrigues	acacia
MG031	Madagascar	baobab	RD001	Rodrigues	eucalyptus
MG033	Madagascar	baobab	RD001	Rodrigues	eucalyptus
MG052	Madagascar	baobab	RD005	Rodrigues	eucalyptus
MG116	Madagascar	baobab	RD005	Rodrigues	eucalyptus
MG004	Madagascar	litchi	RD008	Rodrigues	eucalyptus
MG005	Madagascar	litchi	RD009	Rodrigues	eucalyptus
MG013	Madagascar	litchi	RD013	Rodrigues	eucalyptus
MG016	Madagascar	litchi	RD017	Rodrigues	eucalyptus
MG021	Madagascar	litchi	RD017	Rodrigues	eucalyptus
MG021 MG022	Madagascar	litchi	RD024	Rodrigues	eucalyptus
MG022	Madagascar	litchi	RD035	Rodrigues	eucalyptus
MG029	Madagascar	litchi	RD038	Rodrigues	eucalyptus
MG042	Madagascar	litchi	RD044	Rodrigues	eucalyptus
MG043	Madagascar	litchi	RD045	Rodrigues	eucalyptus
MG049	Madagascar	litchi	RD043	Rodrigues	eucalyptus
MG050	Madagascar	litchi	RD047	Rodrigues	eucalyptus
MG069	Madagascar	litchi	RD049	Rodrigues	eucalyptus
MG073	Madagascar	litchi	RD050	Rodrigues	eucalyptus
MG076	Madagascar	litchi	RD050	Rodrigues	eucalyptus
R028	Réunion	eucalyptus	RD003	Rodrigues	mille fleurs
R003	Réunion	litchi	RD004	Rodrigues	mille fleurs
R005	Réunion	litchi	RD007	Rodrigues	mille fleurs
R028	Réunion	litchi	RD010	Rodrigues	mille fleurs
R065	Réunion	litchi	RD015	Rodrigues	mille fleurs
R066	Réunion	litchi	RD013	Rodrigues	mille fleurs
R084	Réunion	litchi	RD029	Rodrigues	mille fleurs
R087	Réunion	litchi	RD027	Rodrigues	mille fleurs
R094	Réunion	litchi	RD031	Rodrigues	tamarin
RD032	Rodrigues	acacia	110001		

II. METHODES ET TECHNIQUES

L'analyse pollinique des miels repose sur l'identification et le comptage des grains des pollens contenus dans une quantité déterminée de miels et sur une interprétation des résultats. Elle est quantitative et qualitative :

- l'analyse qualitative consiste à inventorier un nombre exhaustif de taxons puis à exprimer leur proportion respective en calculant leurs fréquences relatives.
- l'analyse quantitative conduit au dénombrement des pollens contenus dans 10g.

II.1 Les traitements physico-chimiques des miels

Le miel est un produit complexe à nombreux constituants y compris les pollens. Il est donc nécessaire d'effectuer de traitements physico-chimiques avant les analyses polliniques pour séparer le pollen.

Pour la présente étude, la méthode de traitement utilisée est celle du procédé par acétolyse (ERDTMAN, 1943). Cette technique utilisée en mélissopalynologie permet une meilleure identification des pollens et une observation fine et rigoureuse de la structure de la paroi pollinique (GADBIN, 1979; LOBREAU-CALLEN & CALLEN, 1982).

L'ensemble du traitement est présenté sur la figure 1.

Les principales étapes du traitement physico-chimique des miels ont été les suivantes :

- Homogénéisation et pesage :

Le miel est préalablement homogénéisé afin de repartir uniformément les pollens du miel. La quantité nécessaire pour les analyses polliniques est de 10g à 15g (VERGERON, 1964).

- Extraction des pollens du miel :

La prise d'essai est ensuite diluée dans 20ml d'eau distillée puis portée au bain-marie à 40°C afin de la dissoudre complètement. Deux lavages à l'eau par centrifugation à 2000 tours/min est nécessaire pour éliminer les sucres.

- Acétolyse:

Le culot obtenu est traité dans un mélange acétolysant composé de 9 ml d'anhydride acétique et de 1 ml d'acide sulfurique, préparé juste avant l'utilisation. Puis, l'ensemble est porté au bain-marie bouillant en agitant périodiquement pendant 3 min. Puis, de l'acide acétique glacial est ajouté pour arrêter la réaction ; une centrifugation de 2 000 tours/min permet de séparer le culot du reste du mélange.

- Lavage du culot :

Le culot restant est lavé avec 20 ml d'eau distillée afin d'éliminer les produits chimiques utilisés lors de l'acétolyse. Le tout est centrifugé à 2 000 tours/min pendant 10 mn. Les pollens obtenus seront ensuite montés entre lame et lamelle.

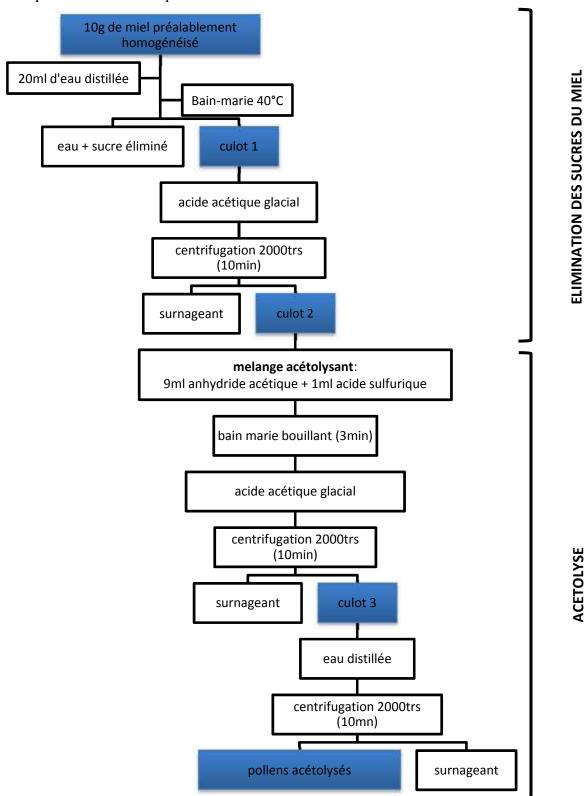


Figure 1: Traitement physico-chimique des miels

II.2 Montage des préparations

Deux modes de préparation microscopique ont été utilisés pour cette étude : le montage fixe et le montage mobile.

Le montage mobile (annexe IV.1) est effectué dans de la glycérine phénolée. Ce montage en milieu liquide autorise le mouvement des grains de pollen, permet de les étudier selon plusieurs vues et donne la possibilité d'une meilleure identification.

Le montage fixe (annexe IV.2) est réalisé dans de la gélatine glycérinée et offre plus de commodité pour la conservation des préparations.

Le montage dans de la gélatine glycérinée est celui préconisé par LOUVEAUX et *al*. (1970, 1978) et VON DER OHE (2004) et est adopté pour les pollens de référence.

Pour cette étude, le montage mobile dans de la glycérine phénolée a été utilisé. Le phénol du milieu de montage prévient la prolifération des micro-organismes.

La quantité de culot dilué montée entre lame et lamelle de 24 x 50 mm est de 50 µl.

II.3 La conduite de l'analyse pollinique

A. Analyse qualitative

Le principe est d'obtenir une bonne représentation des pollens présents dans la préparation.

a. Conduite de l'analyse pollinique qualitative

L'analyse qualitative comporte deux phases : la première est une reconnaissance systématique des types polliniques présents dans la préparation, la seconde est leur dénombrement. La reconnaissance systématique est réalisée à l'aide d'un microscope optique au grossissement x1000 à l'immersion d'huile. Le dénombrement est fait au grossissement x600. Selon VERGERON (1964), il est indispensable de compter au moins 1200 pollens pour avoir une représentativité de l'analyse.

Pour le comptage, à cause de l'hétérogénéité de la répartition des grains de pollens dans la préparation, il a été effectué sur différentes zones de la préparation suivant les lignes du bord supérieur et inférieur, les lignes du quart supérieur et inférieur et la ligne du milieu (fig. 2), jusqu'à ce que tous les types polliniques identifiés soient rencontrés.

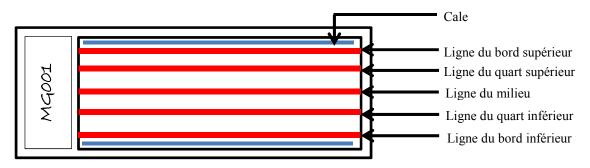


Figure 2: Les différentes lignes du comptage

b. Identification des grains de pollens

La terminologie utilisée pour la description des pollens lors de cette étude est celle de Punt et *al.* (1994) dont les principaux termes sont reportés dans l'annexe V.

Elle concerne:

- la forme et la symétrie du grain de pollen,
- les dimensions de l'axe polaire (P) et de l'axe équatorial (E),
- l'ornementation de l'exine,
- le nombre et la forme des apertures.

Des mesures effectuées sur les grains de pollens ont contribué à leur identification. L'axe polaire (P) et l'axe équatorial (E) ont été mesurés sur 15 grains de pollens pour pouvoir calculer la moyenne.

Les pollens des préparations de miel ont été identifiés par comparaison avec les lames de référence existantes au laboratoire de Palynologie de la Faculté des Sciences de l'Université d'Antananarivo.

Des atlas de pollen et des publications spécialisées (A.P.L.F, 1974; BONNEFILLE et RIOLLET, 1980; LOBREAU-CALLEN & CALLEN, 1982,1983; STRAKA, 1966-1980,1983-1988) donnent des descriptions illustrées qui ont permis de reconnaître les pollens des préparations. Des travaux de recherche effectués à Madagascar ont été aussi utilisés (RAJERIARISON, 1984; RAMAVOVOLOLONA, 1986; RAMAMONJISOA, 1992; RALIMANANA, 1994; RAHARIMBOLA, 2001; RAZAFINDRAKOTO, 2005; RANDRIANARIVELO, 2010).

c. Expression des résultats

Les résultats obtenus par l'analyse qualitative sont présentés sous forme de spectres polliniques. Le spectre pollinique d'un miel est la liste des taxons rencontrés dans ce miel avec leur fréquence relative. La fréquence relative, exprimée en pourcentage, a été obtenue en effectuant le rapport du nombre de grains de pollen d'un type pollinique sur la totalité de grains de pollens comptés dans une préparation, selon la formule suivante :

$$FR = \frac{n}{N} \times 100$$

FR: fréquence relative en %

n : nombre de grains de pollen comptés pour le taxon

N : nombre total de grains de pollens comptés

c.1 Présentation des pollens par classes de fréquence

En mélissopalynologie en vue de l'interprétation, les pollens sont classés habituellement suivant les quatre catégories proposées par LOUVEAUX et al (1970, 1978), VON DER OHE et al. (2004) qui ont proposé quatre catégories de pollens suivant la valeur de la fréquence relative :

- pollen dominant dont la fréquence > 45%
- pollen d'accompagnement, 16 ≤ fréquence ≤ 45%
- pollen isolé important, $3 \le \text{fréquence} \le 15\%$
- pollen isolé lorsque la fréquence < à 3%

c.2 Calcul de la fréquence d'apparition des taxons

Les pollens qui sont souvent rencontrés dans les miels peuvent donner lieu à la détermination de l'origine géographique. La fréquence d'apparition des taxons dans les miels de même type a été calculée avec la formule :

$$FA = \frac{n}{ni}$$

FA: fréquence d'apparition du taxon en %

n : nombre d'échantillon contenant le taxon

ni: nombre total des échantillons

Les taxons considérés comme les plus fréquents sont ceux avec une fréquence $\geq 50\%$ (LOUVEAUX et al, 1978). Ils sont représentés sous forme de diagramme de fréquence

B. Analyse quantitative

Cette analyse permet de quantifier le nombre de grains de pollens contenu dans 10g de miel. Plusieurs méthodes sont utilisées pour évaluer la teneur absolue en pollens du miel (LOUVEAUX et al, 1970, 1978).

a. Conduite de l'analyse quantitative

Pour cette étude, le comptage a été effectué à partir du comptage des pollens contenus dans un certain nombre de lignes qui ont été systématiquement balayées. Les lignes ont été choisies dans différentes zones : le quart supérieur et inférieur, le milieu et les bords supérieur et inférieur de la préparation.

La quantité absolue en pollen est calculée à l'aide de la formule suivante :

Nc = nombre total de grains de pollen comptés sur 5 lignes

L = largeur moyenne de la lamelle.

n = nombre de lignes parcourues (5)

1 = largeur du champ du microscope (360μm pour le microscope MicroCamLab)

Vf = volume montée entre lame et lamelle (50μ l).

b. Expression des résultats

La fréquence absolue ou teneur en grains de pollen par 10g de miel est une constante qui permet de caractériser les miels. MAURIZIO (1968) a classé les miels en cinq catégories suivant la teneur absolue en pollen N. Ce sont :

- Classe I : N< 20.000
- Classe II: 20.000 < N < 100.000
- Classe III: 100.000 < N < 500.000
- Classe IV: 500.000 < N < 1.000.000
- Classe V : N > à 1.000.000.

Les investigations menées sur un grand nombre de miels ont permis d'établir la correspondance entre les différentes classes préconisées par MAURIZIO et les types de miels. Selon LOUVEAUX et al, en 1970, 1978 :

- La classe I comporte les miels de fleurs pauvres en pollen et miels de miellat,
- La classe II renferme la plupart des miels de fleurs,
- La classe III comprend les miels riches en pollen,
- La classe IV correspond à des miels très riches en pollen,
- La classe V indique les miels des fleurs extrêmement riches en pollen ou miels de presse.

c. Méthode d'interprétation des résultats

L'interprétation d'un spectre pollinique aboutit à la détermination de l'origine botanique du miel considéré et à la caractérisation de son origine géographique.

Origine botanique

D'après LOUVEAUX et al (1970, 1978), VON DER OHE et al. (2004), la dominance d'un pollen d'une plante, avec une fréquence relative de plus de 45%, dans le miel permet d'affirmer que ce dernier provient principalement du nectar de la plante considérée donc d'indiquer l'origine botanique du miel analysé.

Taxons caractéristiques et Origine géographique

Le spectre pollinique des miels donne des indications précises sur la région de production des miels. La comparaison des spectres polliniques des miels avec la flore de l'endroit où se trouvent les ruchers permet de localiser l'origine géographique des miels. Dans la plupart des cas, l'apparition de combinaisons de pollens bien déterminés, avec une fréquence d'apparition supérieure à 50%, permet de localiser la région de production des miels. Dans quelques cas relativement rares, l'origine géographique peut être reconnue grâce à des taxons endémiques d'une région déterminée (LOUVEAUX et al, 1970 et 1978; VON DER OHE, 2004).

Ainsi des taxons caractéristiques peuvent être mis en évidence dans un ensemble des miels provenant d'une région déterminée.

II.4 Analyses statistiques des résultats

Pour effectuer des regroupements sur les 59 échantillons de miels étudiés, les résultats des analyses polliniques ont été traités numériquement par une analyse factorielle des correspondances (AFC) sur logiciel XLSTAT 7.5 Pro et par une classification ascendante hiérarchique (CAH) sur logiciel SYSTAT 13.

Les variables considérées pour les deux analyses sont la présence ou l'absence et la fréquence des espèces végétales rencontrées en fonction des grains de pollen observés.

L'AFC sert à représenter la diversité des différents échantillons. La matrice de données de présence / absence de chaque type de pollen contenu dans chaque échantillon a été étudié. L'AFC a été utilisé car les variables considérés sont de nature qualitative (BENZENCRI, 1973). Cette méthode a pour but de représenter graphiquement les relations entre individu – individu, individu – variable et variable – variable. Les individus sont les échantillons étudiés, les variables sont les types polliniques observés dans les échantillons. Dans le présent travail. L'interprétation des résultats repose sur la proximité des points et la forme des nuages de points.

Le CAH consiste à décrire les degrés de similarité entre les échantillons des miels étudiés en utilisant leurs spectres polliniques. La matrice des données de pourcentage d'apparition des variables a été étudiée. La liaison est située à une distance d'autant plus faible que les échantillons sont semblables c'est-à-dire plus le taux de similarité est faible, plus l'origine géographique et l'origine florale des échantillons des miels se rapprochent. Ceux qui sont similaires sont reliés entre eux.

Chapitre III. RESULTATS et INTERPRETATIONS

PRESENTATION DES RESULTATS

I. RESULTATS DE L'ENSEMBLE DES ANALYSES

Dans cette étude, 59 échantillons en provenance de Madagascar, la Réunion et Rodrigues ont été analysés. Le tableau 3 montre le spectre pollinique de l'échantillon MG004 provenant de Madagascar. Les 21 taxons ont été identifiés dans ce miel correspondant à 16 genres et 13 familles de plantes et sont classés par ordre alphabétique. La fréquence relative des taxons varie de 0,16 à 49,13%.

Tableau 3 : Spectre pollinique de l'échantillon MG004

Paramètre	Fréquence relative		
Taxons			
Arecaceae/Cocos nucifera	0,39		
Arecaceae/Elaeis guineensis	0,55		
Asteraceae/Cf Bidens pilosa	0,79		
Asteraceae/Cf Helychrisum sp	1,5		
Asteraceae/Psiadia altissima	0,16		
Asteraceae/Taraxacum sp	0,16		
Cucurbitaceae/Cucumis sp	2,76		
Ericaceae/Philipia floribunda	0,08		
Euphorbiaceae/Macaranga sp	49,13		
Fabaceae/Cf Bauhinia sp	1,58		
Fabaceae/Cf Trachylobium sp	3		
Fabaceae/Mimosa sp	3		
Proteaceae/Grevillea robusta	0,71		
Rubiaceae/Coffea sp	3,63		
Rutaceae/Cf Citrus sp	3,39		
Sapindaceae/Litchi sinensis	23,82		
Type Acanthaceae	0,08		
Type Euphorbiaceae	0,08		
Type Poaceae	0,95		
Type Rubiaceae	4,02		
Type Sterculiaceae	0,24		
Nombre de pollens comptés	920		
Nombre de taxons identifiés	21		

Pour l'ensemble des miels analysés, 124 types polliniques répartis dans 60 familles de plantes ont été recensés. Le tableau 1 de l'annexe VI présente la liste des taxons rencontrés, classés par ordre alphabétique des familles, des genres et des espèces.

La documentation utilisée a permis de déterminer les pollens, généralement au niveau du genre ou au niveau de l'espèce. Quelquefois, elle a dû être arrêtée au niveau de la famille où le terme « Type » a été employé, comme par exemple Type Poaceae. Le terme cf. (confer) a été utilisé lorsque les pollens ont des caractères morphologiques proches de ceux d'un pollen déjà identifié. Toutefois, certains pollens ont dû être classés Indéterminés.

II. RESULTATS PAR PAYS ET PAR TYPES DE MIELS

Les résultats des analyses polliniques sont présentés suivant les pays de production (Madagascar, la Réunion et Rodrigues) et par appellation.

II.1 Résultats de l'analyse des miels de Madagascar

Les miels malgaches étudiés ont été des miels dénommés miels de litchi et miels de baobab.

A. Miels présumés de litchi

Les miels présumés de litchi de Madagascar comprennent 15 échantillons.

a. Résultats de l'analyse pollinique qualitative

a.1. Spectres polliniques

Le tableau 4 présente les spectres polliniques de l'ensemble des échantillons de miels de litchi. Le nombre total des taxons rencontrés est de 42 types polliniques appartenant à 23 familles de plante et 27 genres. Les taxons ont été classés par ordre alphabétique. Le nombre de taxons varie de 7 (MG029) à 21 (MG004). La fréquence relative (FR) des types polliniques varie de 0,08 (Cf *Bidens pilosa*) à 78,3% (*Litchi sinensis*).

a.2. Regroupement des pollens par catégorie de fréquence

Le tableau 5 montre les catégories de pollens d'après la classification établie par LOUVEAUX. Tous les échantillons montrent un pollen dominant (FR \geq 45%) sauf pour l'échantillon MG049.

- Les pollens dominants sont :
 - o Litchi sinensis (8 échantillons)
 - o *Macaranga* sp (4 échantillons)
 - o *Eucalyptus* sp (2 échantillons). Il est à noter que les 2 échantillons correspondant (MG026 et MG042) sont présumés miels de litchi.
- Les pollens d'accompagnement (16≤ FR ≤45%) sont :
 - o *Macaranga* sp (5 échantillons)
 - o *Litchi sinensis* (4 échantillons)
 - o Syzygium sp, Mimosa sp et Eucalyptus sp
- Les pollens isolés importants ($3 \le FR \le 15$ %) comptent 15 taxons dont *Mimosa* sp, *Coffea* sp, Cf *Citrus* sp, *Aphloia theiformis*.
- Les pollens isolés (FR < 3 %) Ils appartiennent à des familles et des genres différents avec une fréquence relative variant de 0,08 (Cf *Bidens pilosa*) à 2,88 (Type Poaceae).

Tableau 4: Spectres polliniques des miels de litchi de Madagascar

Echantillon s(MG)																
Taxons	004	005	013	016	021	022	026	029	042	043	049	050	069	073	076	Fq
Arecaceae/Cocos nucifera	0,39	_	_	_	0,51	_	_	_	_		_	_	_	_	_	13,33
Arecaceae/Elaeis guineensis	0,55	0,77	1,15	0.91	3,12	0,2	-	0,28	_	_	_	0,6	0,64	0.63	0,59	73,33
Asclepiadaceae/Gonocrypta grévei	-	-	-	-	-	-,-	-	-	_	_	_	-	-	-	1.01	6,67
Asteraceae/Cf Bidens pilosa	0.79	_	_	_	0.76	-	_	-	0.08	_	_	0,43	_	-	3.79	33,33
Asteraceae/Cf Helychrisum sp	1,5	_	_	_	-	-	_	_	-	_	_	-	_	-	-	6,67
Asteraceae/Psiadia altissima	0,16	-	-	-	0.93	-	0,11	-	_	-	-	_	-	-	_	20,00
Asteraceae/ <i>Taraxacum</i> sp	0,16	_	_	_	<u>-</u>	_	0,43	_	0,62	_	1.16	_	_	_	_	26,67
Cucurbitaceae/ <i>Cucumis</i> sp	2,76	_	0,29	_	_	_	-	_	-	_	-	_	_	_	_	13,33
Ericaceae/Philipia floribunda	0.08	_	-	_	_	_	1,38	_	_	_	_	_	_	_	_	13,33
Euphorbiaceae/Macaranga sp	49,13	54,71	17,45	19.84	7,71	10,09	-,	14,47	_	58,15	_	58,89	25,48	18,92	17,68	80,00
Euphorbiaceae/Manihot sp	-	-	-	-	-	-	-	, -,	-	-	13,19	-	-			6,67
Fabaceae/Albizzia sp	-	-	-	-	-	_	-	-	3,12	-	-	_	-	_	-	6,67
Fabaceae/Cf Bauhinia sp	1,58	_	_	2,08	_	1,19	_	2.13	-,	1,22	_	0.51	_	-	-	40,00
Fabaceae/Cf Trachylobium sp	3	0.77	3,64	-	_	-	_	1,13	_	-	11,34	-	-	-	_	33,33
Fabaceae/Mimosa sp	3	1,63	2,01	2,72	7,71	1,09	2,13	-	9.76	-	23,38	4,79	1,46	2,34	2,19	80,00
Flacourtiaceae/Aphloia theiformis	-	4,13	4,6	_	8,73	5,74	0,96	-	4,37	-	_	1,97	2,09	2,07	1,09	66,67
Lythraceae/Lythrum sp	-	-	-	-	-	-	-	-	-	-	0,69	-	-	-	-	6,67
Malvaceae/Cf Hibiscus sp	-	-	-	-	-	-	_	-	-	-	8,56	-	-	-	-	6,67
Myrtaceae/Eucalyptus sp	-	-	0,19	0,39	-	-	93,52	-	74,24	7,74	23,61	4,44	4,73	1,08	-	60,00
Myrtaceae/Melaleuca quinquenervia	-	-	-	-	-	-	-	-	-	6,31	-	-	-	-	-	6,67
Myrtaceae/Syzygium sp	-	-	-	-	-	20,67	-	-	-	-	-	-	-	-	-	6,67
Passifloraceae/cf Adenia sp	-	-	-	-	-	-	-	-	-	-	0,23	-	-	-	-	6,67
Proteaceae/Grevillea robusta	0,71	-	-	-	1,02	0,1	-	-	-	0,41	-	0,85	0,91	-	3,62	46,67
Rubiaceae/Coffea sp	3,63	4,04	4,31	-	4,83	-	-	-	-	-	-	-	-	-	-	26,67
Rutaceae/Cf Citrus sp	3,39	4,42	4,12	1,56	3,56	2,47	-	0,99	-	-	-	0,17	0,18	0,18	0,17	73,33
Sapindaceae/Litchi sinensis	23,82	27,4	56,95	69	51,86	56,18	-	78,3	-	25,87	-	23,93	62,69	71,17	66,5	80,00
Spore5	-	-	-	-	2,63	-	-	-	-	-	-	-	-	-	-	6,67
Spore6	-	-	-	-	-	-	-	-	-	-	0,58	-	-	-	-	6,67
Theaceae/Cf Camelia thea	-	-	-	-	-	-	-	-	-	-	0,46	-	-	-	-	6,67
Type Acanthaceae	0,08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6,67
Type Asteraceae	-	0,29	-	-	-	-	-	-	-	-	-	-	-	-	-	6,67
Type Euphorbiaceae	0,08	-	-	-	0,17	-	-	-	-	-	-	-	-	-	-	6,67
Type Malvaceae	-	-	-	-	-	-	-	-	-	-	4,98	-	-	-	-	6,67
Type Poaceae	0,95	-	-	-	6,03	-	0,21	-	5,31	-	11,81	2,74	1,09	2,88	2,69	60,00
Spore Ptéridophyte	-	-	-	-	-	-	-	-	2,5	-	-	-	-	-	-	6,67
Type Rubiaceae	4,02	1,83	5,08	3,24	-	2,27	1,28	2,7	-	-	-	0,68	0,73	0,72	0,67	73,33
Type Sterculiaceae	0,24	-	0,19	0,26	-	-	-	-	-	0,31	-	-	-	-	-	26,67
Type Umbelliferae	-	-	-	-	0,42	-	-	-	-	-	-	-	-	-	-	6,67

Tableau 5: Classification des pollens des miels de litchi de Madagascar par catégorie

Catégorie Echantillons	Pollens dominants (Fr>45%)	Pollens d'accompagnement (16 <fr<45%)< th=""><th>Pollens isolés importants (3%<fr <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fr></th></fr<45%)<>	Pollens isolés importants (3% <fr <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fr>	Pollens isolés (Fr<3%)
MG004	Macaranga sp	Litchi sinensis	Cf Trachylobium Mimosa sp Coffea sp Cf Citrus sp Type Rubiaceae	Cocos nucifera, Elaeis guineensis, Bidens pilosa, Helychrisum, Psiadia altissima, Taraxacum, Cucumis, Philipia floribunda, Bauhinia, Grevillea robusta, Camelia thea, Euphorbiaceae, Poaceae, Sterculiaceae
MG005	Macaranga sp	Litchi sinensis	Aphloia theiformis Coffea sp Cf Citrus sp	Elaeis guineensis, Trachylobium, Mimosa, Asteraceae, Rubiaceae
MG013	Litchi sinensis	Macaranga sp	Cf Trachylobium Aphloia theiformis Coffea sp Cf Citrus sp Type Rubiaceae	Elaeis guineensis, Cucumis, Mimosa, Eucalyptus, Citrus, Sterculiaceae
MG016	Litchi sinensis	Macaranga sp	Type Rubiaceae	Elaeis guineensis, Bauhinia, Mimosa, Eucalyptus, Citrus, Sterculiaceae
MG021	Litchi sinensis		Elaeis guineensis Macaranga sp Mimosa sp Aphloia theiformis Coffea sp Cf Citrus sp Type Poaceae	Cocos nucifera, Bidens pilosa, Psiadia altissima, Grevillea robusta, Spore5, Euphorbiaceae, Umbelliferae
MG022	Litchi sinensis	Syzygium sp	Macaranga sp Aphloia theiformis	Elaeis guineensis, Bauhinia, Mimosa, Grevillea robusta, Citrus, Rubiaceae
MG026	Eucalyptus sp			Psiadia altissima, Taraxacum, Philipia floribunda, Mimosa, Aphloia theiformis, Poaceae, Rubiaceae
MG029	Litchi sinensis		Macaranga sp	Elaeis guineensis, Bauhinia, Trachylobium, Citrus, Rubiaceae
MG042	Eucalyptus sp		Albizzia sp Mimosa sp Aphloia theiformis Type Poaceae	Helychrisum, Taraxacum, Ptéridophyte
MG043	Macaranga sp	Litchi sinensis	Eucalyptus sp Melaleuca quinquenervia	Bauhinia, Grevillea robusta, Sterculiaceae
MG049		Mimosa sp Eucalyptus sp	Manihot sp Cf Trachylobium Type Malvaceae Type Poaceae	Taraxacum, Lythrum, Adenia, Spore6, Camelia thea
MG050	Macaranga sp	Litchi sinensis	Mimosa sp Eucalyptus sp	Elaeis guineensis, Bidens pilosa, Bauhinia, Aphloia theiformis, Grevillea robusta, Citrus, Poaceae, Rubiaceae
MG069	Litchi sinensis	Macaranga sp	Melaleuca quinquenervia	Elaeis guineensis, Mimosa, Aphloia theiformis, Grevillea robusta, Citrus, Poaceae, Rubiaceae
MG073	Litchi sinensis	Macaranga sp		Elaeis guineensis, Mimosa, Aphloia theiformis, Eucalyptus, Citrus, Poaceae, Rubiaceae
MG076	Litchi sinensis	Macaranga sp	<i>Grevillea robusta</i> Cf <i>Bidens</i> sp	Elaeis guineensis, Gonocrypta grévei, Mimosa, Aphloia theiformis, Citrus, Poaceae, Rubiaceae

b. Résultats de l'analyse pollinique quantitative

Le tableau 6 montre les résultats de l'analyse quantitative des échantillons de miel de litchi de Madagascar.

Tableau 6: Résultats de l'analyse quantitative des miels de litchi de Madagascar

Paramètres Echantillons	Teneurs en pollens	Classes
MG004	175 740	III
MG005	201 782	III
MG013	159 790	III
MG 16	162 080	III
MG021	138 160	III
MG022	142 030	III
MG026	576 753	IV
MG029	380 556	III
MG042	502 740	IV
MG043	246 025	III
MG049	19 452	I
MG050	263 120	III
MG069	162 120	III
MG073	253 070	III
MG076	192 070	III

D'après ce tableau, la quantité de pollens varie de 19 452 pollens/10g (MG049) à 576 753 pollens/10g (MG026). La majorité des miels appartient à la classe III correspondant aux miels de fleurs sauf pour MG049 qui est de classe I ou miel de fleur pauvre en pollen et MG026, MG042 classe IV ou miels très riches en pollen.

c. Interprétation des résultats

Origine florale

Un miel monofloral présente un pollen à l'état dominant c'est-à-dire avec une fréquence relative égale ou supérieure à 45% dans le sédiment de miel. Pour les miels de litchi malgaches 14 des 15 échantillons présentent la dominance d'un pollen.

- *Litchi sinensis* se trouve à l'état dominant dans 8 échantillons de miel (MG013, MG016, MG021, MG022, MG029, MG069, MG073, MG076): ce sont des miels monofloraux de litchi. Ces miels sont de classe III d'après la classification établie par MAURIZIO. Ce sont des miels riches en pollen d'après la catégorisation de LOUVEAUX.

- *Macaranga* sp est dominant dans 4 miels (MG004, MG005, MG043, MG050) qui seraient des miels monofloraux de macaranga. Ces miels sont riches en pollen appartenant à la classe III d'après l'analyse quantitative.
- MG026 et MG042 sont caractérisés par la dominance du pollen d'*Eucalyptus* sp avec une fréquence relative égale respectivement à 93,52 et 74,24%. Ce sont des miels d'eucalyptus appartenant à la classe IV ou des miels très richesse en pollen.
- MG049 ne présente pas de pollen dominant mais il possède deux pollens d'accompagnement : *Mimosa* sp et *Eucalyptus* sp avec une fréquence relative égale à 23,38% et 23,61%. C'est un miel de mille fleurs. Cet échantillon appartient au miel de fleur pauvre en pollen ou classe I. Cet échantillon a été certifié miel Bio Ecocert par un laboratoire en France avec une conductivité de 467mS/cm. La conductivité est un paramètre de qualité utilisé pour les miels.

Sur les 15 échantillons de miels présumés litchi de Madagascar 8 échantillons (MG013, MG016, MG021, MG022, MG029, MG069, MG073, MG076) sont conformes à l'appellation « miel de litchi ». Les échantillons MG004, MG005, MG026, MG042, MG043, MG049 et MG050 ne sont pas conforment à l'appellation d'origine.

Taxons caractéristiques

Les pollens les plus fréquents dans les miels de litchi dont l'association peut être considérée comme caractéristiques des miels de litchi de Madagascar comprennent 9 types polliniques. Parmi ces pollens on peut citer : *Litchi sinensis, Macaranga* sp, *Mimosa pudica, Elaeis guineensis*, Cf *Citrus* sp, Type Rubiaceae, *Eucalyptus* sp, Type Poaceae et d'*Aphloia theiformis*.

La figure 3 montre la répartition des taxons les plus fréquents dans les 15 échantillons de miels de litchi de Madagascar

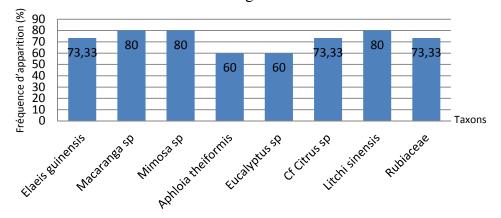


Figure 3: Fréquence d'apparition des taxons dans les miels présumés de litchi de Madagascar

B. Miels présumés de baobab

Les miels présumés de baobab de Madagascar sont au nombre de 5 (MG001, MG031, MG033, MG052, MG116).

a. Résultats de l'analyse pollinique qualitative

a.1 Spectres polliniques

Le tableau 7 présente les spectres polliniques des échantillons étudiés. Les taxons sont classés par ordre alphabétiques. Le nombre total des taxons rencontrés est de 34 avec 21 familles de plantes et 21 genres. Ce nombre varie de 15 taxons (MG116) à 22 taxons (MG001).

La fréquence relative des types polliniques rencontrés est comprise entre 0,18% et 25,21% dont *Zizyphus* sp (25,21%), *Commiphora* sp (23,48%) et *Sorghum* sp (19,23%) ont montré les pourcentages les plus élevés.

a.2 Regroupement des pollens par catégorie de fréquence

Le tableau 8 montre les différentes catégories de pollen. Ce tableau permet de constater que :

- Les 5 échantillons de miel ne présentent pas de pollen dominant.
- Un échantillon MG0116 n'a ni pollen dominant ni pollen d'accompagnement et ni pollen isolés.
- Les pollens d'accompagnement sont constitués par *Commiphora* sp, *Sorghum* sp et *Zizyphus* sp.
- 22 pollens importants sont isolés: *Commiphora* sp, *Dalbergia* sp, *Adansonia* spp, Type Fabaceae et *Trema* sp
- Les pollens isolés comptent 26 types polliniques dont *Delonix* sp, *Grewia* sp, *Psychotria* sp.

b. Résultats de l'analyse pollinique quantitative

Le tableau 9 présente le nombre de pollens dans 10g des miels pour les miels de baobab. La fréquence absolue des pollens varie entre 67 150 grains/10g de miel à 74 710 grains. Ces miels appartiennent à la classe II ou miels de fleurs.

Tableau 7: Spectres polliniques des miels de baobab de Madagascar

Echantillons (MG)	0.01					
Taxons	001	031	033	052	116	Fq
Asteraceae/Taraxacum sp	-	-	-	-	3,76	20
Aquifoliaceae/Ilex mitis	-	-	-	-	3,76	20
Burseraceae/Commiphora sp	23,48	5,61	6,94	7,31	7,23	100
Euphorbiaceae/Cf Astrobuxus sp	-	1,01	-	1,44	7,53	60
Fabaceae/Acacia sp	-	2,12	2,06	1,17	-	60
Fabaceae/Dalbergia sp	7,23	3,5	6,77	6,86	6,74	100
Fabaceae/Delonix sp	0,71	1,01	-	1,17	-	60
Lamiaceae/Ocimum sp	-	1,29	-	-	-	20
Loranthaceae/Bakerella sp	-	-	-	-	9,42	20
Malvaceae/Adansonia sp1	1,88	3,22	5,74	4,69	7,83	100
Malvaceae/Adansonia sp2	2,5	3,13	-	-	-	40
Malvaceae/Cf Hibiscus sp	1,25	2,94	3,51	4,15	6,05	100
Malvaceae/Dombeya sp	-	-	3,08	2,53	6,74	60
Passifloraceae/Adenia Cf elegans	4,02	3,77	-	-	-	40
Poaceae/Sorghum sp	8,3	19,23	16,45	16,52	4,26	100
Proteaceae/Faurea sp	0,71	4,78	-	-	-	40
Rhamnaceae/Zizyphus sp	5,27	25,21	20,82	23,1	-	80
Rubiaceae/Alberta minor	-	-	5,74	1,71	6,34	60
Rubiaceae/Psychotria sp	0,89	1,93	3,6	-	-	60
Sapindaceae/Cf Cardiospermum sp	-	-	0,86	-	-	20
Tiliaceae/Grewia sp	6,43	3,22	2,4	4,15	-	80
Tiliaceae/sp1	0,54	-	-	-	-	20
Tiliaceae/sp2	0,18	-	-	-	-	20
Type Amaranthaceae/Chenopodiaceae	-	-	-	0,18	-	20
Type Anacardiaceae	1,07	-	-	-	-	20
Type Euphorbiaceae	0,45	-	-	-	-	20
Type Fabaceae	14,91	5,06	6,43	4,69	-	80
Type Lamiaceae	-	1,1	-	-	-	20
Type Malvaceae	2,14	-	-	-	-	20
Type Oleaceae	7,32	5,98	6,17	6,86	4,06	100
Type Rutaceae	2,05	2,02	2,74	4,15	4,56	100
Type Sapotaceae	-	-	-	-	7,23	20
Type Umbelliferae	-	-	-	-	7,33	20
Ulmaceae/Trema sp	7,5	2,39	5,57	8,03	7,14	100
Ind. 1	1,16	1,47	1,11	1,26	-	80

Tableau 8: Classification des pollens des miels de baobab de Madagascar par catégorie

Catégorie Echantillon	Pollens dominants (Fréquence>45%)	Pollens d'accompagnement (16 <fréquence<45%)< th=""><th>Pollens isolés importants (3%<fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence></th></fréquence<45%)<>	Pollens isolés importants (3% <fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence>	Pollens isolés (Fr<3%)
MG001		Commiphora sp	Dalbergia sp Oleaceae Sorghum sp Adenia Cf elegans Zizyphus sp Grewia sp Type Fabaceae Trema sp	Delonix sp, Adansonia sp1, Adansonia sp2, Cf Hibiscus, Faurea, Psychotria, Tiliaceae/sp1, Tiliaceae/sp2, Anacardiaceae, Euphorbiaceae, Malvaceae, Rutaceae, Ind. 1
MG031		Sorghum sp Zizyphus sp	Commiphora sp Dalbergia sp Adansonia sp1 Type Oleaceae Adansonia sp2 Adenia Cf elegans Faurea sp Grewia sp Type Fabaceae	Astrobuxus, Acacia, Delonix, Ocimum, Hibiscus, Psychotria, Lamiaceae, Rutaceae, Trema, Ind. 1
MG033		Sorghum sp Zizyphus sp	Commiphora sp Dalbergia sp Adansonia sp1 Cf Hibiscus sp Dombeya sp Type Oleaceae Alberta minor Psychotria sp Type Fabaceae Trema sp	Astrobuxus, Acacia, Cardiospermum, Dombeya, Grewia, Rutaceae, Ind. 1
MG052		Sorghum sp Zizyphus sp	Commiphora sp Dalbergia sp Adansonia sp1 Cf Hibiscus sp Oleaceae Grewia sp Type Fabaceae Type Rutaceae Trema sp	Amaranthaceae/Chenopodiaceae, Acacia, Delonix, Astrobuxus, Dombeya, Alberta minor, Ind. 1
MG116			Trema sp Type Umbelliferae Type Sapotaceae Type Rutaceae Alberta minor Sorghum sp Type Oleaceae Dombeya sp Cf Hibiscus sp Adansonia sp1 Bakerella sp Dalbergia sp Astrobuxus sp Commiphora sp Ilex mitis Taraxacum sp	

Tableau 9 : Résultats de l'analyse quantitative des miels de baobab

Paramètres	Teneurs en pollens	Classes
Echantillons		
MG001	74 710	II
MG031	67 150	II
MG033	75 720	II
MG052	71 740	II
MG116	71 250	II

c. Interprétation des résultats

Origine florale

Les cinq échantillons de miels présumés de baobab analysés ne présentent pas de pollen dominant. Ce sont des miels toutes fleurs ou miels polyfloraux.

D'après les analyses polliniques, les échantillons de miels présumés baobab ne sont pas conforment à l'appellation « miels monofloraux de baobab ».

Taxons caractéristiques

Les échantillons de miels présumés de baobab de Madagascar peuvent être caractérisés par la présence du pollen d'Adansonia, présent dans tous ces miels.

Les pollens les plus fréquents dans les miels de baobab dont l'association peut caractériser les miels de baobab de Madagascar comprennent 17 types dont *Canarium* sp, de *Dalbergia* sp, d'*Adansonia* sp1, d'*Hibiscus*, de *Ligustrum* sp, de *Sorghum* sp, de Rutaceae, de *Trema* sp, de *Zizyphus* sp, de *Grewia* sp et de Fabaceae.

La figure 4 montre la répartition des taxons les plus fréquents dans les 5 échantillons de miels de baobab de Madagascar.

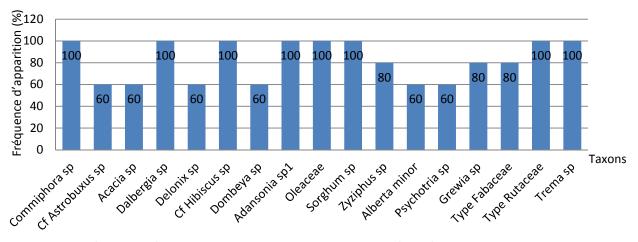


Figure 4: Fréquence d'apparition des taxons dans les miels présumés de baobab malgaches

II.2 Résultats de l'analyse des miels de la Réunion

Nos échantillons comprennent 2 types : miels présumés de litchi et miel présumés d'eucalyptus.

A. Miels présumés de litchi

Les miels présumés de litchi de La Réunion comprennent 8 échantillons (R003, R005, R023, R065, R066, R084, R087, R094).

a. Résultats de l'analyse pollinique qualitative

a.1 Spectres polliniques

Le tableau 10 montre les spectres polliniques de miels. 38 types polliniques répartis en 25 familles de plantes et 27 genres sont rencontrés. Les taxons sont classés par ordre alphabétique. Le nombre de taxons varie de 7 (R065, R087) à 19 (R003). La fréquence relative des types polliniques rencontrés est comprise entre 0,1 et 78,75%.

a.2 Regroupement des pollens par catégorie de fréquence

Le tableau 11 montre les différentes catégories de pollen. Ce tableau permet de constater que :

- Litchi sinensis est dominant dans 6 échantillons (R005, R065, R066, R084, R087, R094) avec une fréquence relative allant de 54,78% à 78,75%.
- Les échantillons R003 et R023 ne présentent pas de pollen dominant.
- Les pollens d'accompagnement comptent 4 taxons : *Albizzia* sp, *Litchi* sinensis, *Eucalyptus* sp, *Casuarina* sp
- Les pollens isolés importants sont au nombre de 7 taxons dont Eucalyptus sp, Melaleuca quinquenervia, Macaranga sp, Casuarina sp.
- Les pollens isolés sont représentés par des taxons tels que *Dypsis* sp, *Cocos nucifera*, *Manihot* sp, *Pandanus* sp, *Passiflora* sp, *Plumbago aphylla*, *Faurea* sp, Cf *Citrus* sp.

b. Résultats de l'analyse pollinique quantitative

Le tableau 12 montre les résultats de l'analyse quantitative des miels de litchi. Le nombre de pollen dans 10g de miel varie de 22 308 (R065) à 32 850 (R005). La totalité des miels analysés appartient à la classe II ou miels de fleurs.

Tableau 10: Spectres polliniques des miels de litchi de Réunion

Echantillons (R) Taxons	003	005	023	065	066	084	087	094	Fq
Anacardiaceae/Schinus terebenthifolius	6,96	4,38	2,66	10,13	2,07	-	-	2,62	75
Aquifoliaceae/Ilex mitis	3,48	-	-	-	0,62	0,3	-	-	37,5
Apocynaceae/Cf <i>Carissa</i> sp	-	-	-	-	0,2	-	-	_	12,5
Arecaceae/Cocos nucifera	_	-	0,66	-	-	_	-	_	12,5
Arecaceae/Dypsis sp	1,45	-	1,2	-	-	2,46	0,46	0,5	62,5
Asteraceae/Emilia sp	-	-	-	-	-	0,79	-	-	12,5
Asteraceae/Psiadia altissima	1,16	1,04	-	-	_	-	-	_	25
Boraginaceae/Echiochilon chazaliei	-	-	-	-	_	_	-	0,12	12,5
Caricaceae/Carica papaya	0,96	-	-	-	-	_	-	-	12,5
Casuarinaceae/ <i>Casuarina</i> sp	3,29	6,34	11,44	-	4,45	9,36	1,38	20,6	87,5
Chenopodiaceae/Chenopodium album	-	-	-	-	-	0,2	-	-	12,5
Euphorbiaceae/Macaranga sp	3,77	-	2,39	-	-	3,25	5,86	2,87	62,5
Euphorbiaceae/Manihot sp	-	-	0,27	-	-	-	-	-	12,5
Fabaceae/ <i>Albizzia</i> sp	27,73	-	-	2,56	30,41	19,21	20,78	-	62,5
Fabaceae/Cassia sp	-	-	-	-	-	-	-	0,25	12,5
Fabaceae/Cf Trachylobium sp	-	-	-	-	_	0,89	-	_	12,5
Loranthaceae/ Amyema subalata	2,12	-	-	0,24	_	-	-	_	25
Moraceae/Cannabis sativa	-	2,42	0,8	-	0,25	_	-	_	37,5
Myrtaceae/Eucalyptus sp	5,22	4,72	40,56	6,11	1,85	3,55	2,64	4,49	100
Myrtaceae/Melaleuca quinquenervia	6,28	4,61	3,46	1,47	2,84	-	4,82	2	87,5
Pandanaceae/Pandanus sp	-	0,69	-	0,73	-	-	-	-	25
Passifloraceae/Passiflora sp	-	-	-	-	-	-	-	0,25	12,5
Plumbaginaceae/Plumbago aphylla	0,97	-	-	-	-	-	-	_	12,5
Proteaceae/Faurea sp	-	-	-	-	-	0,1	-	-	12,5
Rutaceae/Cf Citrus sp	2,42	-	1,99	-	-	-	-	1,62	37,5
Sapindaceae/Litchi sinensis	19,52	66,24	33,51	73,75	56,98	54,78	64,06	62,67	100
Spore8	1,35	-	-	-	-	-	-	-	12,5
Type Amaranthaceae/Chenopodiaceae	-	-	-	-	0,2	-	-	-	12,5
Type Anacardiaceae	-	2,19	-	-	-	-	-	-	12,5
Type Apocynaceae	2,61	-	-	-	0,69	-	-	-	25
Type Asteraceae	2,22	-	-	-	-	-	-	-	12,5
Type Bignoniaceae	-	1,61	-	-	-	-	-	-	12,5
Type Fabaceae	-	1,38	-	-	-	0,99	-	-	25
Type Myrtaceae	-	-	-	-	2,22	-	-	-	25
Type Pteridophyte	6,77	-	-	-	-	-	-	0,25	25
Type Umbelliferae	1,26	1,5	1,07	-	-	0,98	-	1	62,5
Type Vitaceae	-	0,69	-	-	-	-	-	-	12,5
Vacciniaceae/Vaccinium sp		1,84					_	0,75	25

Tableau 11: Classification des pollens des miels de litchi de la Réunion par catégorie

Catégorie Echantillon	Pollens dominants (Fréquence>45%)	Pollens d'accompagnement (16 <fréquence<45%)< th=""><th>Pollens isolés importants (3%<fréquence<16%)< th=""><th>Pollens isolés (Fr<3%)</th></fréquence<16%)<></th></fréquence<45%)<>	Pollens isolés importants (3% <fréquence<16%)< th=""><th>Pollens isolés (Fr<3%)</th></fréquence<16%)<>	Pollens isolés (Fr<3%)
R003	-	Albizzia sp Litchi sinensis	Casuarina sp Macaranga sp Eucalyptus sp Melaleuca quinquenervia Type Pteridophyte Ilex mitis Schinus terebenthifolius	Dypsis, Psiadia altissima, Carica papaya, Manihot, Trachylobium, Amyema subalata, Plumbago aphylla, Citrus, Spore8, Apocynaceae, Asteraceae, Umbelliferae
R005	Litchi sinensis		Schinus terebenthifolius Casuarina sp Eucalyptus sp Melaleuca quinquenervia	Psiadia altissima, Cannabis sativa, Pandanus, Anacardiaceae, Bignoniaceae Fabaceae, Umbelliferae, Vaccinium, Vitis simpsoni
R023		Eucalyptus sp Litchi sinensis	Casuarina sp Melaleuca quinquenervia	Cocos nucifera, Dypsis, Macaranga, Manihot, Cannabis sativa, Citrus sp, Umbelliferae
R065	Litchi sinensis		Schinus terebenthifolius Eucalyptus sp	Albizzia, Amyema subalata, Melaleuca quinquenervia, Pandanus sp
R066	Litchi sinensis	Albizzia sp	Casuarina sp	Schinus terebenthifolius, Ilex mitis, Carissa, Eucalyptus, Melaleuca quinquenervia, Amaranthaceae/Chenopodiaceae, Apocynaceae, Myrtaceae
R084	Litchi sinensis	Albizzia sp	Casuarina sp Macaranga sp Eucalyptus sp	Ilex mitis, Dypsis, Emilia, Chenopodium album, Trachylobium, Faurea, Fabaceae, Umbelliferae
R087	Litchi sinensis	Albizzia sp	Macaranga sp Melaleuca quinquenervia	Dypsis, Casuarina, Eucalyptus
R094	Litchi sinensis	Casuarina sp	Eucalyptus sp	Schinus terebenthifolius, Dypsis, Echiochilon chazaliei, Macaranga, Cassia, Melaleuca quinquenervia, Passiflora, Citrus, Pteridophyte, Umbelliferae, Vaccinium

Tableau 12 : Résultats des analyses quantitatives pour les miels de litchi de Réunion

Paramètres Echantillons	Teneurs en pollens	Classes
R003	24 590	II
R005	32 850	II
R023	22 590	II
R065	22 308	II
R066	23 020	II
R084	23 790	II
R087	23 870	II
R094	24 790	II

c. Interprétation des résultats

Origine florale

Six des huit échantillons présentent la dominance de *Litchi sinensis* (R005, R065, R066, R084, R087, R094) avec une fréquence relative allant de 54,78% à 78,75%. Ces miels sont donc des miels monofloraux de litchi.

R023 et R003 qui ne présentent pas de pollens dominants sont donc des miels polyfloraux ou miels toutes fleurs.

Sur 8 échantillons de miels présumés litchi de la Réunion, 6 échantillons sont conforment à l'appellation « miels monofloraux de litchi » (R005, R065, R066, R084, R087, R094). Les échantillons R023 et R003 ne sont pas conforment à cette appellation.

Taxons caractéristiques

Les pollens les plus fréquents dans les miels de litchi de la Réunion comprennent 9 types dont *Litchi sinensis, Casuarina* sp, de *Schinus* sp, de *Myrtaceae*, de *Dypsis* sp, de *Macaranga* sp, d'*Albizzia* sp et d'Umbelliferae.

La figure 5 montre la répartition des taxons les plus fréquents dans les 8 échantillons de miels de litchi de la Réunion.

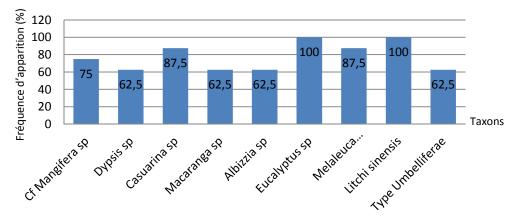


Figure 5: Fréquence d'apparition des taxons dans les miels présumés de litchi de Réunion

B. Miels présumés d'eucalyptus

Ce type comporte un seul échantillon R028.

a. Résultats de l'analyse pollinique qualitative

a.1 Spectre pollinique

Le tableau 13 montre le spectre pollinique du miel d'eucalyptus de Réunion. Le miel renferme 10 taxons repartis en 8 familles de plantes et 9 genres.

Tableau 13: Spectre pollinique de l'échantillon de miel d'eucalyptus de Réunion (R028)

Taxons Paramètre	Fréquence relative
Anacardiaceae/ Schinus terebenthifolius	46,3
Casuarinaceae/Casuarina sp	2,61
Cucurbitaceae/Cucurbita sp	0,58
Fabaceae/Cf Bremia insignus	17,42
Fabaceae/Cf Leucaena sp	6,82
Lythraceae/Cuphea pustulata	0,73
Malvaceae/Dombeya sp	1,74
Myrtaceae/Eucalyptus sp	8,42
Myrtaceae/Psidium cattleyanum	5,08
Type Moraceae	1,31

a.2 Regroupement des pollens par catégorie de fréquence

Le tableau 14 montre les différentes catégories de pollen. Ce tableau permet de constater que :

- Schinus terebenthifolius est le pollen dominant
- Cf Bremia insignus est le pollen d'accompagnement.
- Les pollens isolés importants sont représentés par 3 taxons : Cf *Leucaena* sp, *Eucalyptus* sp, *Psidium cattleyanum*
- Les pollens isolés sont constitués par les taxons tels que : *Casuarina* sp, *Cucurbita* sp, *Cuphea pustulata*, *Dombeya* sp, Type Moraceae.

Tableau 14: Classification des pollens du miel présumé d'eucalyptus de la Réunion par catégorie

Catégorie Echantillon	Pollens dominants (Fréquence>45%)	Pollens d'accompagnement (16 <fréquence<45%)< th=""><th>Pollens isolés importants (3%<fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence></th></fréquence<45%)<>	Pollens isolés importants (3% <fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence>	Pollens isolés (Fr<3%)
	Schinus terebenthifolius	Cf Bremia insignus	Cf Leucaena sp	Casuarina, Cucurbita,
R028			Eucalyptus sp	Cuphea pustulata,
			Psidium cattleyanum	Dombeya, Moraceae

b. Résultats de l'analyse pollinique quantitative

Le nombre de pollens présent dans 10g de miel est de 102 790 soit un miel appartenant à la classe III ou miel de fleur riche en pollen.

c. Interprétation des résultats

Origine florale

Le pollen dominant est *Schinus terebenthifolius* avec une fréquence relative égale à 46,3%. C'est un miel monofloral de Schinus ou miel de baie rose appartenant à la classe III de Maurizio. Ce miel provenant de la Réunion n'est pas conforme à l'appellation « miel d'eucalyptus » donnée initialement.

II.3 Résultats de l'analyse des miels de Rodrigues

Les miels analysés pour Rodrigues correspondent à 4 types présumés : miels d'acacia, miel d'eucalyptus, miel « mille fleurs » et miels de tamarin.

A. Miels présumés d'acacia

Ce type de miel est constitué de 2 échantillons : RD032 et RD033.

a. Résultats de l'analyse pollinique qualitative

a.1 Spectres polliniques

Le tableau 15 montre les spectres polliniques des miels présumés miels d'acacia. Au total, 8 types polliniques ont été rencontrés lors des analyses. Ils sont répartis en 4 familles de plantes et 7 genres. 5 taxons ont été rencontrés dans chaque échantillon. Ils sont classés par ordre alphabétiques.

Tableau 15: Spectres polliniques des miels d'acacia de Rodrigues

Echantillons Taxons	RD032	RD033
Casuarinaceae/Casuarina sp	67,31	-
Fabaceae/Cf Leucaena sp	6,35	11,46
Fabaceae/Mimosa sp	-	7,3
Fabaceae/Tamarindus indica	-	55,73
Myrtaceae/Eucalyptus sp	-	17,08
Myrtaceae/Eugenia sp	10,18	-
Myrtaceae/Syzygium sp	14,37	-
Type Combretaceae/Melastomataceae	1,8	8,43

a.2 Regroupement des pollens par catégorie de fréquence

Le tableau 16 montre les différentes catégories de pollen. Ce tableau permet de constater que :

- Les pollens dominants sont : Casuarina sp et Tamarindus indica.
- Seul un des échantillons (RD033) présente un pollen d'accompagnement : Eucalyptus sp
- Les pollens isolés importants sont représentés par 5 taxons : *Syzigium* sp, *Eugenia* sp, *Mimosa* sp, *Leucaena* sp, Melastomataceae.
- L'échantillon RD033 n'a pas de pollen isolé, Type Combretaceae/
 Melastomataceae est le pollen isolé dans l'échantillon RD032.

Tableau 16: Classification des pollens des miels d'acacia de Rodrigues par catégorie

Catégorie Echantillon	Pollens dominants (Fréquence>45%)	Pollens d'accompagnement (16 <fréquence<45%)< th=""><th>Pollens isolés importants (3%<fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence></th></fréquence<45%)<>	Pollens isolés importants (3% <fréquence <16%)<="" th=""><th>Pollens isolés (Fr<3%)</th></fréquence>	Pollens isolés (Fr<3%)
RD032	Casuarina sp		Syzigium sp	Combretaceae/
			Eugenia sp	Melastomataceae
			Cf Leucaena sp	
RD033	Tamarindus	Eucalyptus sp	Туре	
	indica		Melastomataceae	
			Mimosa sp	
			Cf Leucaena sp	

b. Résultat de l'analyse pollinique quantitative

La quantité de pollens présents dans 10 g de miel est de 18 120 pour RD033 et de 19 760 pour RD032, ce qui indique des miels appartenant à la classe I ou miels de fleurs pauvres en pollen.

c. Interprétation des résultats

Origine florale

Les pollens dominants sont *Casuarina equisetifolia* pour l'échantillon RD032 et *Tamarindus indica* pour l'échantillon RD033.

L'échantillon RD032 où un pollen de plante anémophile est dominant sera considéré comme un miel polyfloral ou miel toutes fleurs

L'échantillon RD033 est un miel monofloral de *Tamarindus indica*. Les échantillons RD032 et RD033 appartiennent à la classe I de Maurizio ou miels de fleurs pauvres en pollen.

Les deux échantillons ne sont pas conforment à l'appellation « miels monofloraux d'acacia » donnée initialement.

Taxons caractéristiques

Les pollens les plus fréquents dans les deux échantillons de miels de Rodrigues analysés (RD032, RD033) sont les pollens de Myrtaceae, de Fabaceae, de Casuarinaceae et de Melastomataceae.

B. Miels présumés d'eucalyptus

Les miels présumés d'eucalyptus de Rodrigues sont représentés par 19 échantillons.

a. Résultats de l'analyse pollinique qualitative

a.1 Spectres polliniques

Le tableau 17 montre les spectres polliniques de miels d'eucalyptus de Rodrigues. Les types polliniques rencontrés sont au nombre de 54. Ils sont répartis en 27 genres et 23 familles. Les taxons sont classés par ordre alphabétique. La fréquence relative est comprise entre 0,08% à 80,86%. Le nombre de taxon varie de 5 (RD038, RD051) à 17 taxons (RD001).

a.2 Regroupement des pollens par catégorie

Le tableau 18 montre les différentes catégories des pollens présents dans les miels analysés. Ce tableau permet de constater que :

- Tous les échantillons montrent la dominance du pollen d'*Eucalyptus* sp.
- Melaleuca quinquenervia est le pollen d'accompagnement pour 5 échantillons.
- Les pollens isolés importants comprennent *Mimosa* sp, *Melaleuca* quinquenervia et *Casuarina* sp.
- Les pollens isolés sont constitués par : Dypsis sp, Cocos nucifera, Cf
 Helychrisum sp, Taraxacum sp, Albizzia sp, Acacia sp, Croton sp, Coffea
 sp, Cf Citrus sp, Pinus sp.

b. Résultats de l'analyse pollinique quantitative

Le tableau 19 montre les résultats de l'analyse quantitative des miels présumés d'eucalyptus de Rodrigues. La quantité de pollens dans 10g de miel est de 127 219 (RD006) à 517 520 (RD051). Les échantillons RD024, RD045, RD051 appartiennent à la classe IV ou miels très riches en pollen et le reste des échantillons soit 16 échantillons appartiennent à la classe III ou miels riches en pollen.

Tableau 17: Spectres polliniques des miels d'eucalyptus de Rodrigues

Echantillons (RD)	001	003	005	006	000	000	012	017	024	020	025	020	044	0.45	0.47	0.40	0.40	050	051	E
Taxons	001	002	005	006	008	009	013	017	024	030	035	038	044	045	047	048	049	050	051	Fq
Apocynaceae/ Carissa sp	-	-	-	-	-	-	-	-	-	-	-	-	1,89	-	3,92	-	2,22	-	-	15,79
Arecaceae/Cocos nucifera	-	-	-	-	-	0,18	-	-	-	-	0,09	-	-	-	-	-	-	-	-	10,53
Arecaceae/Dypsis sp	0,08	-	1,23	-	0,19	-	0,18	0,49	0,53	0,2	-	-	2,07	-	-	-	-	-	-	42,11
Ascospore	-	0,08	-	-	-	-	-	-	-	-	-	-	0,18	-	-	-	-	-	-	10,53
Asteraceae/ Bidens sp	0,7	0,64	0,74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15,79
Asteraceae/ Helychrisum sp	0,94	-	-	-	-	-	-	-	0,21	-	-	-	-	-	-	-	-	-	-	10,53
Asteraceae/Taraxacum sp	-	-	0,08	-	-	-	-	-	-	-	-	-	-	-	-	-	0,48	-	-	15,79
Balsaminaceae/Impatiens sp	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,64	-	5,26
Brassicaeae/ Brassica sp	-	-	-	-	-	-	-	-	-	-	-	-	0,54	-	-	-	-	-	-	5,26
Casuarinaceae/Casuarina sp	3,04	3,37	2,95	2,98	2,18	3,47	3,15	2,84	2,03	5,77	1,67	8,02	2,61	-	5,06	2,17	3,38	2,44	-	89,47
Cucurbitaceae/Cucumis sp	-	-	-	-	-	-	-	-	-	-	-	-	1,08	-	-	-	-	-	-	5,26
Deuteromycète/Arthrinium sp	-	-	-	3,63	2,46	-	-	2,16	-	0,59	-	-	-	-	_	-	-	-	-	21,05
Euphorbiaceae/Croton sp	0,16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5,26
Fabaceae/Acacia sp	-	0,08	-	-	-	-	-	-	-	-	0,09	-	-	-	-	-	-	-	-	10,53
Fabaceae/Albizzia sp	-	-	0,08	-	0,19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10,53
Fabaceae/Cassia sp	-	-	-	-	-	-	-	-	-	-	0,18	-	-	-	-	-	-	-	-	5,26
Fabaceae/Cf Bauhinia sp	0,62	0,16	-	1,4	0,76	1,19	-	0,78	-	6,65	-	-	-	-	_	-	-	_	6,22	42,11
Fabaceae/Cf Leucaena sp	-	-	-	-	-	-	-	-	-	-	-	-	1,35	1,54	10,7	6,71	4,73	5,63	-	31,58
Fabaceae/Cf Trachylobium sp	0,62	0,48	2,95	2,14	-	-	-	1,76	-	1,76	-	6,74	-	-	-	-	-	-	-	36,84
Fabaceae/Dalbergia sp	1,64	-	1,72	2,98	2,37	3,75	3,69	2,06	-	2,05	-	-	-	-	-	-	-	-	-	42,11
Fabaceae/Mimosa sp	7,1	6,98	4,84	-	1,99	4,11	3,24	3,04	6,51	8,9	10,61	10,58	8,56	-	-	-	5,21	-	-	68,42
Malpighiaceae/Cf Rhynchophora sp	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,07	-	5,26
Myrtaceae/Eucalyptus sp	65,65	62,04	61,07	64,19	76,35	65,36	69,6	72,65	79,3	65,59	78,16	74,53	61,89	80,86	65,62	72,42	69,53	73,78	80,6	100
Myrtaceae/Melaleuca quinquenervia	12,1	17,26	18,44	14,79	10,88	14,17	10,16	8,33	10,99	6,35	8,33	-	-	-	-	8,68	3,09	-	6,97	73,68
Myrtaceae/Syzygium sp	-	-	-	-	-	-	-	-	-	-	-	-	12,16	6,69	8,5	7,75	6,17	9,13	4,93	36,84
Pandanaceae/Pandanus sp	2,5	2,97	3,03	-	-	2,93	2,88	-	0,21	-	-	-	1,44	-	-	0,62	1,54	-	-	47,37
Pinaceae/Pinus sp	-	-	0,08	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	5,26
Rubiaceae/Coffea sp	0,94	0,32	-	-	-	-	-	-	0,21	-	-	-	-	-	-	-	-	-	-	15,79
Rutaceae/Cf Citrus sp	_	_	0,49	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5,26

Tableau 17 (suite): Spectres polliniques des miels d'eucalyptus de Rodrigues

Echantillons (RD) Taxons	001	002	005	006	008	009	013	017	024	030	035	038	044	045	047	048	049	050	051	Fq
Spore2	-	_	_	_	_	_	_	_	-	0,1	-	-	-	_	-	_	_	_	_	5,26
Spore3	_	_	_	_	_	_	_	_	_	_	0,09	_	_	_	_	_	_	_	_	5,26
Spore4	-	-	_	_	-	-	-	-	-	_	0,09	_	_	-	-	-	-	-	-	5,26
Theaceae/ Camelia thea	-	-	-	-	-	-	-	-	-	-	-	_	0,63	-	-	-	-	-	-	5,26
Type Acanthaceae	0,47	-	-	-	0,09	-	-	0,1	-	-	-	-	-	-	-	-	-	-	-	15,79
Type Amaranthaceae/Chenopodiaceae	-	1,28	1,72	-	-	-	-	0,88	-	-	-	-	-	2,67	-	-	-	-	-	21,05
Type Apocynaceae	-	-	-	-	-	-	-	-	-	-	-	-	2,34	-	3,92	-	-	-	-	10,53
Type Asteraceae	-	0,72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5,26
Type Combretaceae/Melastomataceae	-	-	-	3,63	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5,26
Type Cucurbitaceae	-	-	-	-	-	-	-	-	-	-	0,7	-	-	-	-	-	-	-	-	5,26
Type Fabaceae	0,23	-	0,25	0,93	-	1,19	3,33	2,25	-	1,27	-	-	-	-	-	-	-	-	-	36,84
Type Lythraceae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,96	-	-	15,79
Type Melastomataceae	-	-	-	-	-	-	-	-	-	-	-	-	-	0,21	2,29	1,65	2,7	-	-	21,05
Type Meliaceae/Sapotaceae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,32	1,29	10,53
Type Poaceae	-	-	-	-	-	-	-	-	-	-	-	-	1,08	8,02	-	-	-	-	-	10,53
Type Pteridophyte	-	-	0,33	-	-	-	-	-	-	0,1	-	-	-	-	-	-	-	-	-	10,53
Type Rutaceae	-	-	-	-	-	-	2,25	-	-	-	-	-	-	-	-	-	-	-	-	5,26
Type Sapotaceae	-	-	-	-	-	-	-	-	-	-	-	-	2,16	-	-	-	-	-	-	5,26
Type Simarubaceae	2,89	3,61	-	3,35	2,55	3,38	1,53	2,65	-	0,68	-	-	-	-	-	-	-	-	-	42,11
Type Ulmaceae	-	-	-	-	-	-	-	-	-	-	-	0,12	-	-	-	-	-	-	-	5,26
Ind.4	-	-	-	-	-	0,27	-	-	-	-	-	-	-	-	-	-	-	-	-	5,26
Ind.7	0,08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5,26

Tableau 18: Classification des pollens des miels d'eucalyptus de Rodrigues par catégorie

Catégorie Echantillon	Pollens dominants (Fréquence>45%)	Pollens d'accompagnement (16 <fréquence<45%)< th=""><th>Pollens isolés importants (3%<fréquence <16%)<="" th=""><th>Pollens islés (Fr<3%)</th></fréquence></th></fréquence<45%)<>	Pollens isolés importants (3% <fréquence <16%)<="" th=""><th>Pollens islés (Fr<3%)</th></fréquence>	Pollens islés (Fr<3%)
RD001	Eucalyptus sp		Melaleuca quinquenervia, Casuarina sp, Mimosa sp	Dypsis, Bidens, Helychrisum, Croton, Bauhinia, Trachylobium, Dalbergia, Pandanus, Coffea, Acanthaceae, Fabaceae, Simarubaceae, Ind.7
RD002	Eucalyptus sp	Melaleuca quinquenervia	Casuarina, Simarubaceae, Mimosa	Ascospore, Bidens, Acacia, Bauhinia, Trachylobium, Pandanus, Coffea, Amaranthaceae, Asteraceae
RD005	Eucalyptus sp	Melaleuca quinquenervia	Casuarina , Arthrinium sp, Mimosa , Trachylobium	Dypsis, Bidens, Taraxacum, Casuarina, Albizzia, Trachylobium, Dalbergia, Pinus, Citrus, Amaranthaceae, Fabaceae, Pteridophyte
RD006	Eucalyptus sp	Melaleuca quinquenervia	Casuarina, Arthrinium sp, Simarubaceae, Dalbergia, Melastomataceae	Casuarina, Bauhinia, Trachylobium, Dalbergia, Fabaceae
RD008	Eucalyptus sp		Melaleuca quinquenervia	Casuarina, Arthrinium, Albizzia, Bauhinia, Dalbergia, Mimosa, Acanthaceae, Simarubaceae
RD009	Eucalyptus sp	Melaleuca quinquenervia	Casuarina, Arthrinium sp, Dalbergia, Mimosa, Simarubaceae	Cocos nucifera, Bauhinia, Pandanus, Fabaceae, Ind.4
RD013	Eucalyptus sp		Melaleuca quinquenervia, Casuarina, Dalbergia, Mimosa, Fabaceae	Dypsis, Pandanus, Rutaceae, Simarubaceae
RD017	Eucalyptus sp		Melaleuca quinquenervia, Casuarina, Mimosa sp	Dypsis, Casuarina, Arthrinium, Bauhinia, Trachylobium, Dalbergia, Acanthaceae, Amaranthaceae, Fabaceae, Simarubaceae
RD024	Eucalyptus sp		Melaleuca quinquenervia, Mimosa	Dypsis, Helychrisum, Casuarina, Pandanus, Coffea
RD030	Eucalyptus sp		Melaleuca quinquenervia, Casuarina, Mimosa, Bauhinia	Dypsis, Arthrinium, Trachylobium, Dalbergia, Spore2, Fabaceae, Pteridophyte, Simarubaceae
RD035	Eucalyptus sp		Melaleuca quinquenervia, Mimosa	Cocos nucifera, Casuarina, Acacia, Cassia, Spore3, Spore4, Cucurbitaceae
RD038	Eucalyptus sp		Casuarina, Mimosa, Trachylobium	Ulmaceae
RD044	Eucalyptus sp		Syzygium, Mimosa	Carissa, Dypsis, Ascospore, Brassica, Casuarina, Cucumis, Leucaena, Pandanus, Camelia thea, Apocynaceae, Poaceae, Sapotaceae
RD045	Eucalyptus sp	Melaleuca quinquenervia	Casuarina, Arthrinium sp, Bauhinia, Simarubaceae Combretaceae	Leucaena, Chenopodiaceae, Melastomataceae
RD047	Eucalyptus sp		Syzygium, Carissa, Leucaena, Casuarina, Apocynaceae	Melastomataceae
RD048	Eucalyptus sp		Syzygium, Melaleuca quinquenervia, Leucaena	Casuarina, Pandanus, Melastomataceae
RD049	Eucalyptus sp		Syzygium, Mimosa, Leucaena, Casuarina, Melaleuca quinquenervia	Carissa, Taraxacum, Pandanus, Lythraceae, Melastomataceae
RD050	Eucalyptus sp		Syzygium, Leucaena, Rhynchophora	Impatiens, Casuarina, Sapotaceae
RD051	Eucalyptus sp		Syzygium, Melaleuca quinquenervia, Bauhinia	Meliaceae/Sapotaceae

Tableau 19 : Résultats des analyses quantitatives pour les miels d'eucalyptus de Rodrigues

Paramètres Echantillons (RD)	Teneurs en pollens	Classes
001	159 790	III
002	148 532	III
005	131 690	III
006	127 219	III
008	271 121	III
009	154 170	III
013	231 705	III
017	284 881	III
024	506 140	IV
030	160 235	III
035	342 380	III
038	319 176	III
044	135 740	III
045	513 120	IV
047	156 270	III
048	277 810	III
049	252 150	III
050	312 870	III
051	517 520	IV

c. Interprétation des résultats

Origine florale

Le pollen *d'Eucalyptus* sp est dominant dans l'ensemble des échantillons avec une fréquence relative de 61,07% à 80,86%. Ces échantillons sont donc des miels monofloraux d'eucalyptus appartenant à la classe III ou IV ou miels riches ou très riches en pollen.

L'appellation « miels monofloraux d'eucalyptus » est justifié pour l'ensemble des échantillons de miels provenant de Rodrigues.

Taxons caractéristiques

Les pollens les plus fréquents dans les 19 miels d'eucalyptus de Rodrigues comprennent 4 types polliniques : *Eucalyptus* sp, *Casuarina* sp, *Melaleuca quinquenervia* et *Mimosa* sp (fig. 6).

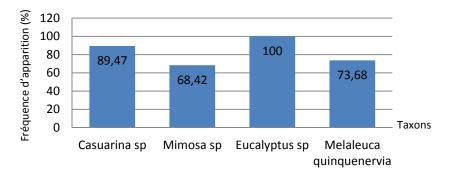


Figure 6: Fréquence d'apparition des taxons dans les miels d'eucalyptus de Rodrigues

C. Miels présumés de « mille fleurs »

Ce type de miels comprend 8 échantillons de miels (RD003, RD004, RD007, RD010, RD015, RD020, RD029, RD037).

a. Résultats de l'analyse pollinique qualitativea.1 Spectres polliniques

Le tableau 20 montre les spectres polliniques de miels présumés de mille fleurs. 15 types polliniques sont présents dans les échantillons de miels. Ils sont répartis en 10 familles et 14 genres. Le nombre de taxon varie de 5 pour RD020 à 09 pour RD007 et RD010. La fréquence relative varie de 0,16% à 46,61%.

Echantillons (RD) 003 004 007 010 020 037 015 029 Fq **Taxons** Apocynaceae/Cf Carissa sp 4,16 2,21 1,43 44,44 3,63 Burseraceae/Commiphora sp 14,92 17,61 12,3 4,27 44,44 Casuarinaceae/Casuarina sp 16,97 18,88 22,36 3,38 9,53 9,61 77,78 Cyperaceae/Cyperus sp 20,49 0,31 22,22 Fabaceae/Albizzia sp 0,94 11,11 Fabaceae/Cesalpinia pulcherina -0,16 11,11 Fabaceae/Cf Bauhinia sp 0,58 0,99 33,33 3,08 Fabaceae/Mimosa sp 21,21 19,2 28,96 20,95 23,36 27,27 17,01 77,78 Myrtaceae/Eucalyptus sp 22,52 33,92 40,4 25,88 35,81 28,3 37,24 46,61 100 Myrtaceae/Eugenia sp 6,17 6,51 3,61 18,24 12,68 10,41 6,46 77,78 Myrtaceae/Syzygium sp 11,74 4,66 10,66 8,59 19,19 31,38 12,46 14,33 100 Rosaceae/Rubus rosaefolius 8,31 5,51 33,33 1,32 _ Rubiaceae/Psychotria sp 0,27 11,11 Type Bignoniaceae 3,52 4,29 33,33 2,16 Vacciniaceae/Vaccinium sp 1,05 11,11

Tableau 20: Spectres polliniques des miels de mille fleurs de Rodrigues

a.2 Regroupement des pollens par catégorie

Le tableau 21 montre les différentes catégories de pollen. Ce tableau permet de constater que :

- Tous les échantillons ne présentent pas de pollen dominant.
- Les pollens d'accompagnements sont composés par 7 taxons dont *Commiphora* sp, *Casuarina* sp, *Cyperus* sp, *Eucalyptus* sp, *Mimosa* sp.
- Les pollens isolés importants sont représentés par 9 taxons dont *Psychotria* sp, *Vaccinium* sp, Cf *Bauhinia* sp, *Cesalpinia pulcherina*, *Albizzia* sp, *Rubus rosaefolius*, Type Bignoniaceae, Cf *Carissa* sp, *Cyperus* sp
- Les pollens isolés sont constitués par *Cesalpinia pulcherina*, Cf *Bauhinia* sp, *Psychotria* sp, *Vaccinium* sp.

Tableau 21: Classification des pollens des miels de mille fleurs de Rodrigues par catégorie

Catégorie Echantillon	Pollens dominants (Fr>45%)	Pollens d'accompagnement (16 <fr<45%)< th=""><th>Pollens isolés importants (3%<fr<16%)< th=""><th>Pollens isolés (Fr<3%)</th></fr<16%)<></th></fr<45%)<>	Pollens isolés importants (3% <fr<16%)< th=""><th>Pollens isolés (Fr<3%)</th></fr<16%)<>	Pollens isolés (Fr<3%)
003		Commiphora sp	Cf Carissa sp	
		Casuarina sp	Eugenia sp	
		Cyperus sp	Syzygium sp	
		Eucalyptus sp		
004		Casuarina sp	Commiphora sp	Carissa sp
		Mimosa sp	Eugenia sp	Bauhinia sp
		Eucalyptus sp	Syzygium sp	
007		Eucalyptus sp	Cf Carissa sp	Vaccinium sp
		Mimosa sp	Commiphora sp	<i>Albizzia</i> sp
			Syzygium sp	
			Rubus rosaefolius	
			Type Bignoniaceae	
010		Casuarina sp	Eugenia sp	Carissa sp
		Mimosa sp	Syzygium sp	Bauhinia sp
		Eucalyptus sp	Type Bignoniaceae	Rubus rosaefolius
015		Mimosa sp	Casuarina sp	Psychotria sp
		Eucalyptus sp		Type
		Eugenia sp		Bignoniaceae
		Syzygium sp		
020			Commiphora sp	
			Eugenia sp	
029		Mimosa sp	Casuarina sp	
		Eucalyptus sp	Cf Bauhinia sp	
			Eugenia sp	
			Syzygium sp	
037		Eucalyptus sp	Casuarina sp	Cyperus sp
		Mimosa sp	Eugenia sp	Cesalpinia
			Syzygium sp	pulcherina
			Rubus rosaefolius	

b. Résultats de l'analyse pollinique quantitative

Le tableau 22 montre les résultats de l'analyse quantitative des miels de mille fleurs de Rodrigues. La quantité de pollens varie de 16 750 (RD029) à 31 790 (RD037). Les miels analysés appartiennent soit à la classe I ou miels de fleur pauvres en pollen soit à la classe II ou miels de fleur.

Tableau 22 : Résultats des analyses quantitatives pour les miels de mille fleurs de Rodrigues

Paramètres Echantillons	Teneurs en pollens	Classes
RD003	21 280	II
RD004	20 190	II
RD007	29 817	II
RD010	18 590	I
RD015	27 987	II
RD020	17 290	I
RD029	16 750	I
RD037	31 790	II

c. Interprétation des résultats

Origine florale

Tous les échantillons ne présentent pas de pollen dominant donc ce sont des miels polyfloraux ou miels toutes fleurs. Ils appartiennent à la classe I ou II donc miels de fleurs ou miels de fleurs pauvres en pollen.

L'ensemble des 8 échantillons de miels de Rodrigues sont conforment à l'appellation « miels de mille fleurs ».

Taxons caractéristiques

Les pollens les plus fréquents dans les miels de mille fleurs de Rodrigues comprennent 5 types polliniques : *Eucalyptus* sp, *Syzygium* sp, *Casuarina* sp, *Mimosa* sp et *Eugenia* sp.

La figure 7 montre les taxons les plus fréquentes dans les 8 échantillons de miels de mille fleurs de Rodrigues.

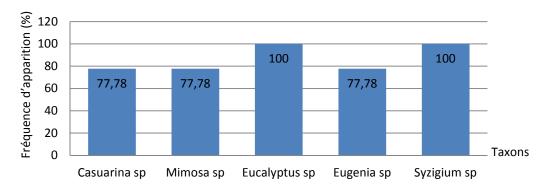


Figure 7: Fréquence d'apparition des taxons dans les miels de mille fleurs de Rodrigues

D. Miel présumé de tamarin

Ce type de miel comprend un seul échantillon : RD031.

a. Résultats de l'analyse pollinique qualitative

a.1 Spectres polliniques

Le tableau 23 montre le spectre pollinique du miel présumé de tamarin. L'échantillon présente 7 types polliniques répartis en 5 familles de plantes et 6 genres. Les taxons sont classés par ordre alphabétiques. La fréquence relative varie de 0,33% (*Taraxacum* sp) à 49,84% (*Eucalyptus* sp).

Tableau 23: Spectre pollinique du miel de tamarin de Rodrigues (RD031)

Paramètre Taxons	Fréquence relative
Apocynaceae/Cf Carissa sp	3,75
Asteraceae/Taraxacum sp	0,33
Fabaceae/Mimosa sp	8,31
Fabaceae/Tamarindus indica	18,89
Myrtaceae/Eucalyptus sp	49,84
Myrtaceae/Syzygium sp	17,43
Type Combretaceae/Melastomataceae	1,47

a.2 Regroupement des pollens par catégorie

Le tableau 24 montre les différentes catégories de pollens présents dans les échantillons analysés. Ce tableau permet de constater que :

- Le pollen dominant est représenté par pollen d'*Eucalyptus* sp.
- Les pollens d'accompagnement sont constitués par *Syzygium* sp et de *Tamarindus indica*.

- Les pollens isolés importants sont représentés par Cf *Carissa* sp et *Mimosa* sp.
- Les pollens isolés sont constitués par *Taraxacum* sp et Type Combretaceae/Melastomataceae.

Tableau 24: Classification des pollens du miel de tamarin de Rodrigues par catégorie

Catégorie Echantillon	Pollens dominants (FR>45%)	Pollens d'accompagnement (16 <fr<45%)< th=""><th>Pollens isolés importants (3%<fr <16%)</fr </th><th>Pollens isolés (FR<3%)</th></fr<45%)<>	Pollens isolés importants (3% <fr <16%)</fr 	Pollens isolés (FR<3%)
RD031	Eucalyptus sp	Syzygium sp Tamarindus indica	Carissa sp Mimosa sp	Taraxacum sp Combretaceae/ Melastomataceae

b. Résultats de l'analyse pollinique quantitative des miels

Le nombre de pollens présents dans 10g de miel est de 124 230 grains de pollen soit un miel appartenant à la classe III ou miel de fleur riche en pollen.

c. Interprétation des résultats

Origine florale

L'échantillon RD031 présente la dominance d'*Eucalyptus* sp avec une fréquence relative de 49,84%. Ce miel appartient à la classe II ou miel de fleur. C'est donc un miel d'*Eucalyptus*.

Cet échantillon de miel de Rodrigues n'est pas conforme à l'appellation « miel de tamarin » donnée initialement.

III. RESULTATS DE L'ANALYSE STATISTIQUE

Les analyses statistiques des spectres polliniques permettent de différentier les types de miels.

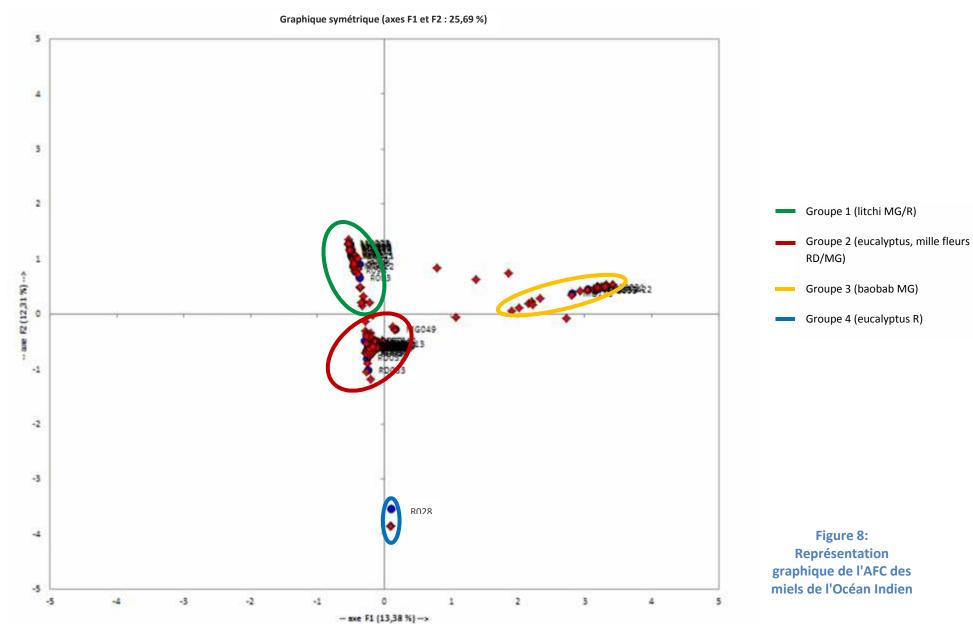
III.1 Analyse factorielle des correspondances (AFC)

Les résultats de l'analyse factorielle des correspondances (AFC) sur XLSTAT 7.5 permettent de distinguer les différents groupes de miels selon leur composition pollinique (figure 3). Par rapport aux axes F1 et F2 qui porte 25,69% d'information, quatre groupes de miels distincts apparaissent selon l'apparition d'un taxon dans le spectre pollinique des échantillons analysés.

• Groupe 1:

Ce groupe comprend les miels contenant des pollens de *Litchi sinensis* avec des pourcentages variant de 78,3 à 19,52%. Il est constitué par 20 échantillons provenant de Madagascar et de La Réunion. 29 autres taxons caractérisent aussi ce groupe tels que Arecaceae/*Elaeis guinensis*, Euphorbiaceae/*Macaranga* sp, Fabaceae/*Mimosa* sp, Flacourtiaceae/*Aphloia theaformis*, Myrtaceae/*Eucalyptus* sp, Rutaceae/Cf *Citrus* sp, Sapindaceae/*Litchi sinensis*, Type Poaceae, Rubiaceae en majorités.

• Groupe 2:


La présence ou la dominance de pollens *d'Eucalyptus* sp caractérise ce groupe. Les miels présumés d'eucalyptus, miels d'acacia, miel de tamarin, miel de mille fleurs de Rodrigues et quelques miels présumé litchi (MG029, MG042, MG049) de Madagascar constituent ce groupe. 37 autres taxons caractérisent aussi ce groupe. Les familles de Myrtaceae, de Fabaceae et de Casuarinaceae sont les plus représentées. Les échantillons proviennent de Rodrigues et de Madagascar.

• Groupe 3:

La présence de pollens de Malvaceae/*Adansonia* spp définit ce groupe. Les miels présumés de baobab de Madagascar constituent ce groupe. 23 autres taxons caractérisent aussi ce groupe avec les familles de Malvaceae, Oleaceae, Poaceae, Rhamnaceae, Rubiaceae, Tiliaceae, Type Fabaceae, Type Rutaceae, Ulmaceae.

• **Groupe 4:**

Un seul échantillon constitue ce groupe R028 qui est un miel présumé eucalyptus de la Réunion. Ce groupe est aussi caractérisé par 7 taxons : *Schinus terebenthifolius*, *Cucurbita* sp, *Bremia insignus*, cf *Homalium* sp, *Cuphea pustulata*, *Psidium cattleyanum*, TypeMoraceae.

Page | 49

III.2 Classification ascendante hiérarchique (CAH)

La classification ascendante hiérarchique (CAH) permet de différencier 6 groupes de miels (fig. 9) :

• **Groupe 1**:

30 échantillons de miels provenant de Rodrigues forment ce groupe. Ce sont les miels d'eucalyptus qui le constituent mais il y a aussi la présence de miel de tamarin et des miels de mille fleurs.

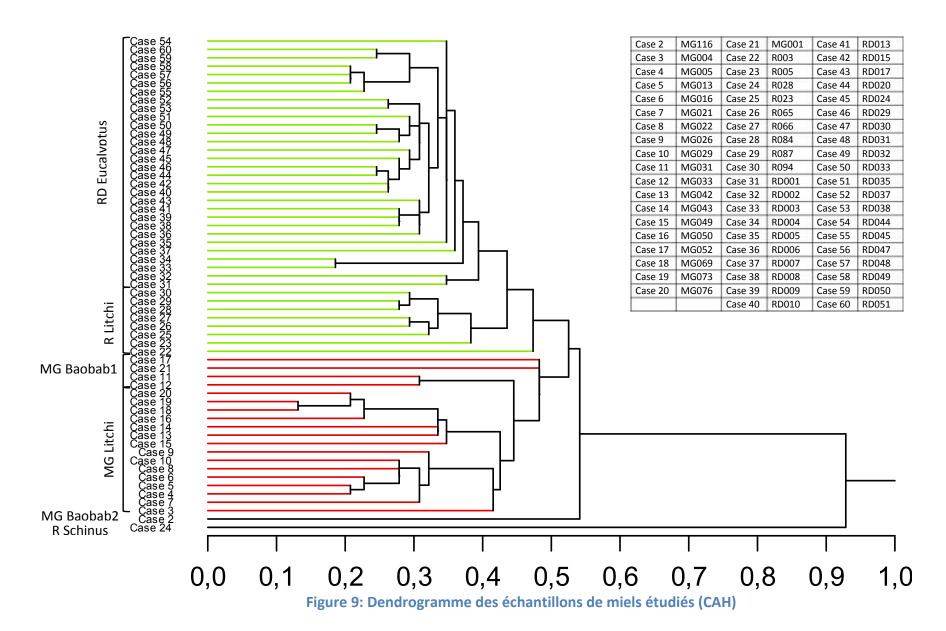
• **Groupe 2**:

Il est formé par 8 échantillons de miels de litchi qui proviennent de La Réunion.

• **Groupe 3**:

Il est constitué par 4 échantillons de miels. Ces échantillons proviennent de Madagascar et contiennent des pollens d'*Adansonia* spp.

• **Groupe 4**:


Il regroupe 15 échantillons de miels provenant de Madagascar : les miels de litchi et les miels de macaranga malgache.

• **Groupe 5**:

Il est constitué par l'échantillon MG116 provenant de Madagascar avec une appellation de miel de baobab. Le spectre de ce miel diffère des autres miels contenant des pollens de baobab.

• Groupe 6:

Il est constitué par l'échantillon R028 qui est un miel de bai rose ou schinus de la Réunion

Page | 51

IV. DESCRIPTIONS DES DIFFERENTS TYPES DE MIELS

La combinaison des analyses polliniques et les analyses statistiques ont permis de classer les miels en monofloraux et polyfloraux. Chaque classe contient différents types de miels.

IV.1 LES MIELS MONOFLORAUX

D'après les analyses polliniques et les analyses statistiques, sur les 59 échantillons de miels étudiés, 42 échantillons soit 72% des miels se révèlent être monofloraux. Ces miels monofloraux comprennent : les miels monofloraux de litchi, miels monofloraux d'eucalyptus, miels de macaranga, miel de tamarin et miel de schinus.

• Les miels monofloraux de litchi

Les miels monofloraux de litchi sont caractérisés par la dominance de pollens de *Litchi sinensis* avec une fréquence relative variant entre 51,86% à 78,75% pour les échantillons de Madagascar et entre, 54,78% à 73,75% pour les échantillons de la Réunion. Du point de vue de l'analyse quantitative, les miels appartiennent à la classe II et III de Maurizio (MAURIZIO, 1968). Ce sont donc des miels de fleurs ou des miels de fleurs riches en pollen (LOUVEAUX et al, 1970, 1978; VON DER OHE, 2004).

Au total, sur 23 échantillons présumés de litchi, 16 peuvent être considérés comme monofloraux.

La figure 9 et 10 montre les diagrammes polliniques des échantillons de miels de litchi MG013 et R094.

Sur la photo 1 et 2 est montré la morphologie des pollens contenus dans les échantillons de miels de litchi MG013 et R094 vue au microscope.

Figure 10: Diagramme pollinique de l'échantillon MG013 : miel de litchi

1: Litchi sinensis 2: Macaranga sp 3: Mimosa sp

Photo 1: Champ de miel de litchi (MG013)

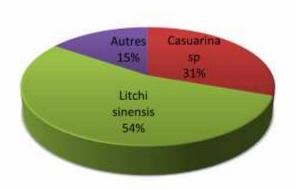
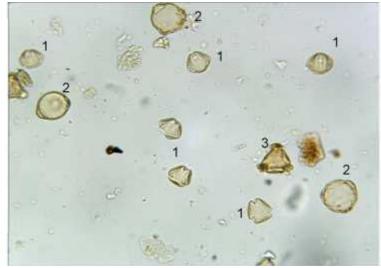



Figure 11: Diagramme pollinique de l'échantillon R094 : miel de litchi

1: Litchi sinensis 2: Casuarina sp 3: Eucalyptus sp

Photo 2: Champ de miel de litchi R094

• Les miels monofloraux de macaranga

Les miels identifiés comme miels de macaranga sont caractérisés par la dominance du pollen de cette plante avec une fréquence relative entre 49,13 et 58,89%. Ce type de miel est représenté par 4 échantillons présumés litchi de Madagascar (MG004, MG005, MG043, MG050). Ces miels appartiennent à la classe III ou miels de fleurs riches en pollen. Dans les mêmes échantillons, la fréquence relative des pollens de *Litchi sinensis* varie de 23,82% à 27,4%.

La figure 11 montre le diagramme pollinique de l'échantillon MG005 à prédominance de *Macaranga* sp.

Sur la photo 3 est montrée la morphologie des pollens contenus dans l'échantillon de miel de macaranga MG005 vue au microscope.

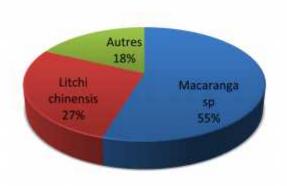
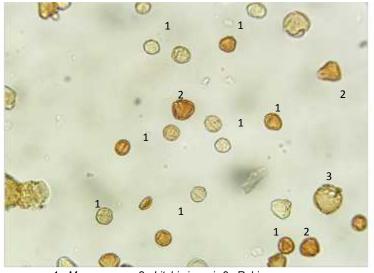



Figure 12: Diagramme pollinique de l'échantillon MG005 : miel de macaranga

1 : Macaranga sp 2 : Litchi sinensis 3 : Rubiaceae

Photo 3: Champ de miel de macaranga MG005

• Les miels monofloraux d'eucalyptus

Ces miels sont caractérisés par une forte dominance du pollen d'*Eucalyptus* sp avec une fréquence relative variant entre 61,07% à 80,86% pour les 20 échantillons de Rodrigues et entre 74,24% à 93,52 % pour les 2 échantillons identifiés à Madagascar. Du point de vue de l'analyse quantitative, les miels appartiennent à la classe III ou IV. Ce sont donc des miels de fleurs riches en pollen ou des miels très riches en pollen.

La figure 12 montre le diagramme pollinique de l'échantillon MG026 à prédominance d'*Eucalyptus* sp.

La photo 4 montre la photo du champ du miel vue au microscope optique de l'échantillon MG026 avec la prédominance du pollen d'*Eucalyptus* sp.

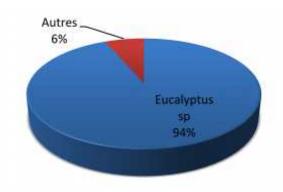
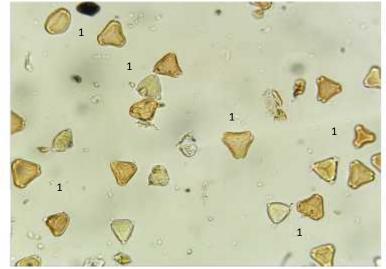



Figure 13: Diagramme pollinique de l'échantillon MG026 : miel d'eucalyptus

1 : Eucalyptus spp

Photo 4: Champ de miel d'eucalyptus MG026

• Le miel monofloral de schinus

Ce type de miel est représenté par l'échantillon R023 présumé miel d'eucalyptus de la Réunion. Le pollen de *Schinus* sp domine avec une fréquence relative de 46,3%. La quantité de pollen est de 102 790 pollen/10g indiquant un miel de classe III ou miel de fleur riche en pollen.

La figure 13 montre le diagramme pollinique de l'échantillon R028 à prédominance de *Schinus terebenthifolius*.

La photo 5 montre la morphologie des pollens contenus dans le miel de baie rose R028 vue au microscope.

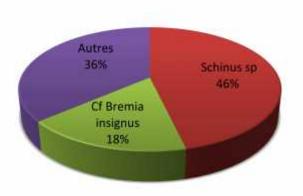


Figure 14: Diagramme pollinique de l'échantillon R028 : miel de schinus

1 : Schinus sp 2 : Bremia insignus 3 : Eucalyptus sp 4 : Casuarina sp

Photo 5: Champ de miel de schinus R028

• Le miel monofloral de tamarin

Ce type de miel est représenté par l'échantillon RD033 présumé miel d'acacia de l'île Rodrigues. Il présente la dominance du pollen de *Tamarindus indica* (Fabaceae) avec une fréquence relative de 55,73%. Le nombre de grains de pollen dans cette échantillon est de 18 120/10g soit un miel de classe I ou miel de fleur pauvre en pollen.

La figure 14 montre le diagramme pollinique de l'échantillon RD033 à prédominance de *Tamarindus indica*. La photo 6 montre la morphologie des pollens contenus dans l'échantillon de miel de tamarin RD033 vue au microscope

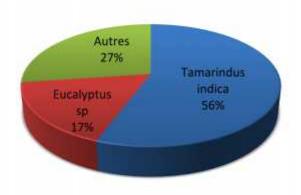



Figure 15: Diagramme pollinique de l'échantillon RD033 : miel de tamarin

1 : Tamarindus indica 2 : Mimosa sp 3 : Eucalyptus sp

Photo 6: Champ de miel de tamarin RD033

IV.2 LES MIELS POLYFLORAUX OU MILLE FLEURS

Ce type de miels regroupe ceux qui n'ont pas de pollen dominant dans leur spectre. 28% des échantillons de miels analysés sont polyfloraux correspondant à des miels produits à l'île de Rodrigues et à Madagascar.

• Miels mille fleurs

Ce type de miel est représenté par 8 échantillons de « miels mille fleurs » de l'île Rodrigues (RD003, RD004, RD007, RD010, RD015, RD020, RD029, RD037), un échantillon présumé acacia de Rodrigues (RD032) et un échantillon présumé litchi de Madagascar (MG049). Ils appartiennent à la classe I ou II ; ce sont des miels de fleurs pauvres en pollen ou des miels de fleurs.

La figure 15 montre le diagramme pollinique de l'échantillon RD013 miel mille fleurs de Rodrigues. La photo 7 montre la morphologie des pollens contenus dans l'échantillon RD013 vue au microscope.

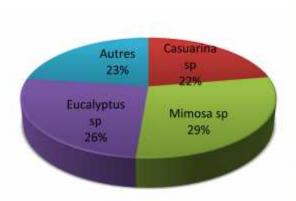


Figure 16: Diagramme pollinique de l'échantillon RD013 : miel mille fleurs

1: *Mimosa* sp 2: *Casuarina* sp 3: *Eucalyptus* sp 4: Simarubaceae 5: *Pandanus* sp

Photo 7: Champ de miel mille fleurs RD013

• Miels de baobab

Les miels dénommés miels de baobab ne présentent pas de pollen dominant mais ces échantillons sont marqués par la présence des pollens d'*Adansonia* spp avec une fréquence relative variant de 1,88% à 7,83% dans leur spectre pollinique. Les miels considérés appartiennent à la classe II ou miels de fleurs.

La figure 16 montre le diagramme pollinique de l'échantillon MG033 miel de baobab de Madagascar. La photo 8 montre la morphologie des pollens contenus dans l'échantillon MG033 de baobab de Madagascar.

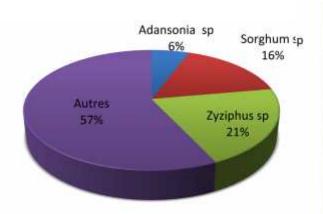


Figure 17: Diagramme pollinique de l'échantillon MG033 : miel de baobab

1: Adansonia sp 2: Sorghum sp 3: Zyziphus mauritiana 4: Dombeya sp 5: Acacia sp

Photo 8: Champ de miel de baobab MG033

IV.3 DESCRIPTION DES PRINCIPAUX TYPES POLLINIQUES RENCONTRES

Les pollens décrits sont ceux à fréquences élevées et ceux qui sont des indicateurs de l'origine géographique des miels. Ils comprennent 17 pollens de 13 familles de plantes décrits selon l'ordre alphabétique des familles dans les planches photographiques I à IV. Les photos et les descriptions ont été faites avec un microscope MicroCamLab au laboratoire de Palynologie Appliquée de l'Université d'Antananarivo.

1- ANACARDIACEAE:

- Schinus terebenthifolius (Planche I, n° 4 8)
 - Symétrie et forme : pollen isopolaire, tricolporé, triangulaire en vue polaire, elliptique en vue équatoriale
 - ODIMENSION : P = 20 μm (18 à 22 μm), E = 20,3 (19 à 21 μm)
 - o Aperture : 3 colporus
 - o <u>Exine</u>: striée
 - o <u>Bibliographie</u>: CHOPINET et al. (1964)

2- APHLOIACEAE:

- Aphloia theiformis (Planche III, $n^{\circ} 3 5$)
 - Symétrie et forme : pollen isopolaire, tricolporé, triangulaire en vue polaire, circulaire à elliptique en vue équatoriale
 - O Dimension: $P = 23.5 \mu m$ (22 à 25 μm), $E = 21.5 \mu m$ (21 à 23 μm)
 - o Aperture : 3 colporus
 - Ectoaperture : sillon large à membrane granuleuse avec épaississement périaperturale de l'endexine,
 - Endoaperture circulaire à bord net de 5 μm de diamètre
 - o Exine : striato-réticulée
 - o <u>Bibliographie</u>: STRAKA H. & FRIEDRICH B. (1984).

3- ARECACEAE:

- Elaeis guineensis (Planche I, n° 12 13)
 - Symétrie et forme : pollen hétéropolaire, monosulqué, triangulaire à côtés concaves en vue polaire.
 - O Dimension: L= 44,5 μm (43 à 46 μm); l= 25,75 μm (24,5 à 27 μm)
 - o Aperture: 1 colpus, elliptique, marge diffuse, membrane lisse.
 - <u>Exine</u>: endexine absente, tectum en face distale lisse à scabre et en face proximale fossulée, rugulée.
 - o <u>Bibliographie</u>: GUINET & CARATINI (1974)

4- ASTERACEAE:

- Taraxacum sp (Planche I, n° 14 15)
 - Symétrie et forme : pollen isopolaire, tricolporé, subcirculaire en vue polaire et équatoriale.
 - O Dimension (épine comprise) : $P = 43 \mu m$; $E = 44,5 \mu m$
 - o Aperture: 3 colporus
 - o Exine : echinulée, fenestrée
 - o <u>Bibliographie</u>: MULLER et al. (1989)

5- CASUARINACEAE:

- Casuarina sp (Planche I, $n^{\circ} 9 11$)
 - Symétrie et forme : pollen isopolaire, tripororé, elliptique en vue équatoriale, circulaire à subtriangulaire en vue polaire
 - O Dimension: $P = 26 \mu m$; $E = 30 \mu m$
 - o Aperture : 3 pores équatoriaux
 - o <u>Exine</u>: tectée, lisse à scabre
 - Bibliographie: MULLER & al (1989)

6- EUPHORBIACEAE:

- *Macaranga* sp (Planche I, $n^{\circ} 1 3$)
 - <u>Symétrie et forme</u> : pollen isopolaire, tricolporé, subcirculaire en vue polaire, circulaire en vue équatoriale
 - Dimension: $P = 22 \mu m (21 \text{ à } 23 \mu m)$; $E = 20 \mu m (19 \text{ à } 23 \mu m)$
 - Aperture: 3 colporus,
 - Ectoaperture : sillon étroit, présentant une constriction dans sa partie médiane, à membrane granuleuse
 - Endoaperture : sillon étroit, allongé suivant l'équateur, circulaire environ 5 μm de diamètre
 - Exine : tectée, scabre
 - Bibliographie: BONNEFILLE et RIOLLET (1980), PUNT, W. (1962)

7- FABACEAE:

- Tamarindus indica (Planche III, $n^{\circ} 6 7$)
 - Symétrie et forme : pollen isopolaire, tricolporé, bréviaxe, elliptique en vue équatoriale, subcirculaire en vue polaire.
 - o <u>Dimension</u>: $P = 35 \mu m (30 \text{ à } 37 \mu m)$; $E = 30 \mu m (27 \text{ à } 34 \mu m)$
 - o Aperture : 3 colporus
 - o Exine: striée
 - o <u>Bibliographie</u>: BONNEFILLE, R. et RIOLLET, G., 1980, STRAKA (1980)
- *Mimosa* sp (Planche II, $n^{\circ} 3 4$)
 - o Symétrie et forme : tétrade, dissymétrique
 - Dimension : D (grand axe) = 19 μm ; d (petit axe) = 12 μm
 - o Aperture : simples, un pore peu visible aux angles des monades
 - o Exine : tectée, la surface de l'exine est lisse
 - Bibliographie: BONNEFILLE R. et RIOLLET G. (1980); STRAKA & FRIEDRICH (1984)

8- MALVACEAE:

- Adansonia sp1 (grandidieri) (Planche II, $n^{\circ} 1 2$)
 - Symétrie et forme : pollen isopolaire, tripororé, elliptique en vue équatoriale, subcirculaire à triangulaire en vue polaire
 - O Dimension: $P = 51 \mu m$; $E = 56 \mu m$
 - o Aperture : 3 porus
 - o <u>Exine</u>: tectée, subéchinulée
 - o <u>Bibliographie</u>: STRAKA H. et FRIEDRICH B. (1983)
- Adansonia sp2 (za/rubrostipa) (Planche III, n° 1 2)
 - Symétrie et forme : pollen isopolaire, tripororé, elliptique en vue équatoriale, subcirculaire à triangulaire en vue polaire
 - o Dimension: $P = 43 \mu m$; $E = 48 \mu m$
 - o Aperture: 3 porus
 - o Exine : tectée, subéchinulée
 - o <u>Bibliographie</u>: STRAKA H. et FRIEDRICH B. (1983)

9- MYRTACEAE:

- Eucalyptus sp (Planche IV, $n^{\circ} 5 6$)
 - Symétrie et forme : pollen isopolaire, breviaxe, triangulaire, tricolporé parfois tétracolporé ; convexe ou concave en vue polaire, elliptique en vue équatoriale plus rarement quadrangulaire.
 - o <u>Dimension</u>: $P = 15.5 \mu m (14 \text{ à } 17 \mu m)$; $E = 28.4 \mu m (28 \text{ à } 30 \mu m)$
 - \circ Aperture: 3 4 colporus
 - o Exine: tectée, scabre
 - o <u>Bibliographie</u>: CERCEAU-LARRIVAL& al (1984)

- Eugenia sp (Planche IV, $n^{\circ} 3 4$)
 - Symétrie et forme: pollen subisopoloaire, tricolporé, souvent syncolpé, triangulaire en vue polaire, elliptique bréviaxe en vue équatoriale, angulaperture
 - o Dimension: $P = 18 \mu m$; $E = 27.5 \mu m$
 - o Aperture : 3 colporus
 - o Exine: tectée, micro-réticulée
 - o <u>Bibliographie</u>: GUERS, J. et al (1971)
- *Melaleuca quinquenervia* (Planche IV, $n^{\circ} 1 2$)
 - Symétrie et forme: pollen isopolaire breviaxe, tricolporé, syncolpé, triangle concave en vue polaire, elliptique en vue équatorial
 - o <u>Dimension</u>: $P = 11 \mu m (10 \text{ à } 12 \mu m)$; $E = 24,5 \mu m (24 \text{ à } 25 \mu m)$
 - o Aperture : 3 colporus
 - o Exine : tectée, scabre
 - o <u>Bibliographie</u>: STRAKA H. et FRIEDRICH B. (1984)

10-PANDANACEAE:

- Pandanus sp (Planche II, $n^{\circ} 8 9$)
 - Symétrie et forme: pollen hétéropolaire, monoporé, circulaire à bord net, longiaxe, subovale en vue équatoriale,
 - o Dimension: $P = 25 \mu m$; $E = 20 \mu m$
 - o Aperture : 1 porus
 - o <u>Exine</u>: subéchinulée
 - o Bibliographie: STRAKA H. et FRIEDRICH B. (1984)

11-POACEAE:

- Sorghum sp (Planche IV, $n^{\circ} 10 11$)
 - Symétrie et forme: pollen hétéropolaire, monoporé, à bords net et régulier, ovoïde en vue équatoriale, subcirculaire en vue polaire.
 - O <u>Dimension</u>: P: 49 μm, E: 41 μm
 - o Aperture: 1 porus circulaire, annulus épais
 - o Exine: tectée, lisse
 - o Bibliographie: BONNEFILLE, R. et RIOLLET, G. (1980)

12-RHAMNACEAE:

- Zizyphus sp (Planche IV, $n^{\circ} 7 9$)
 - Symétrie et forme: pollen isopolaire, bréviaxe à équiaxe, tricolporé, elliptique en vue équatoriale, triangulaire en vue polaire.
 - o <u>Dimension</u>: $P = 26.3 \mu m$ (21 à 30 μm); $E = 27 \mu m$ (24.6 à 31 μm)
 - o Aperture : 3 colporus
 - Ectoaperture : sillon à bords net
 - Endoaperture : subcirculaire, bordé par un épaississement nexinique visible à
 l'intersection du sillon avec l'endoaperture
 - o <u>Exine</u>: tectée, très finement rigulo-striée
 - Bibliographie: STRAKA H. & SIMON A. (1969), RAMAVOVOLOLONA (1986)

13-SAPINDACEAE:

- Nephelium litchi (Planche II, $n^{\circ} 5 7$)
 - Symétrie et forme: pollen isopolaire, tricolporé, triangulaire en vue polaire, elliptique en vue équatorial, breviaxe.
 - o <u>Dimension</u>: $P = 17 \mu m (14 \text{ à } 20 \mu m)$; $E = 24.5 \mu m (24 \text{ à } 25 \mu m)$
 - o Aperture: 3 colporus
 - Ectoaperture : sillon long, étroit et à bords granuleux
 - Endoaperture : subcirculaire
 - o <u>Exine</u>: tectée, striato-réticulée
 - o <u>Bibliographie</u>: MULLER & al (1989)

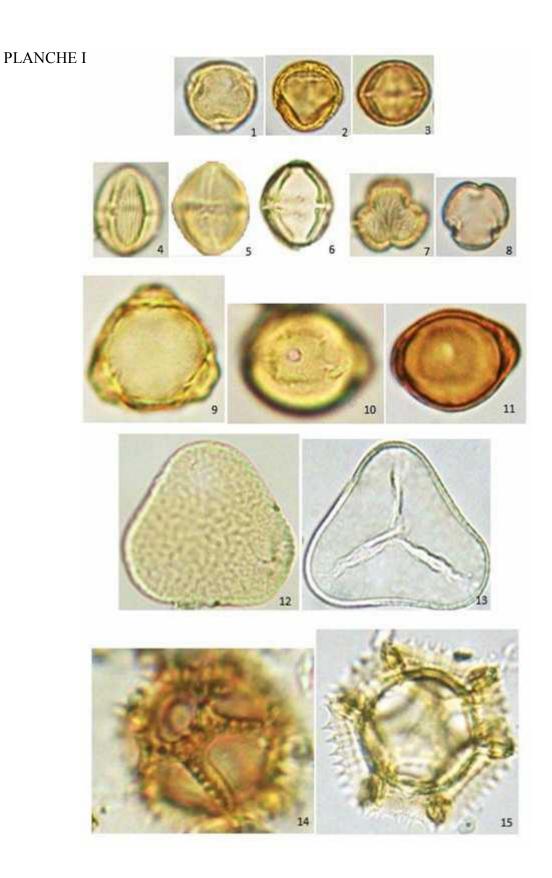
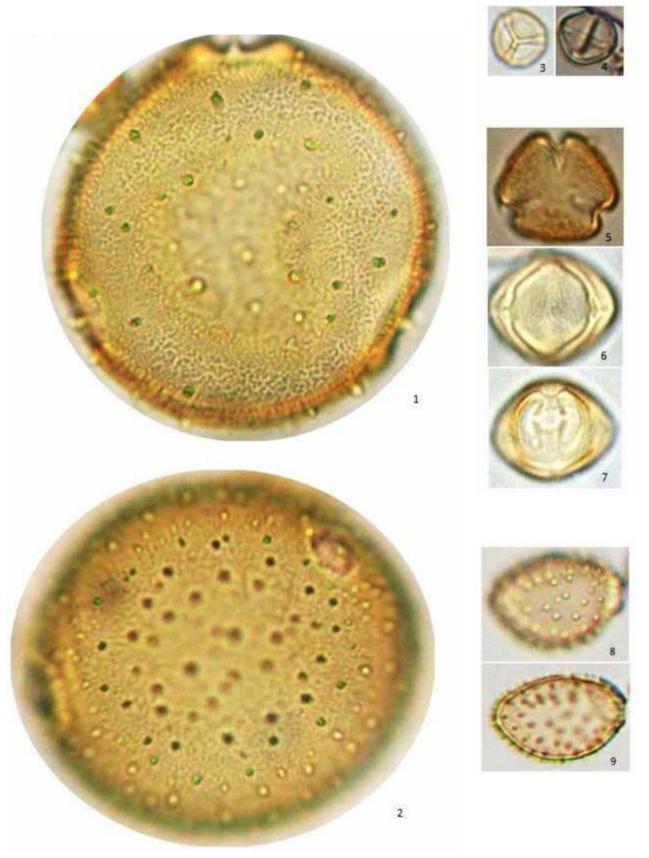




Planche I: Quelques types polliniques contenus dans les échantillons de miels analysés (Mph, x1000). Figures: 1-3. Euphorbiaceae, *Macaranga* sp. – 4-8. Anacardiaceae, *Schinus terebenthifolius*. – 9-11. Casuarinaceae, *Casuarina* sp. – 12,13. Arecaceae, *Elaeis guineensis* – 14,15. Asteraceae, *Taraxacum* sp.

PLANCHE II

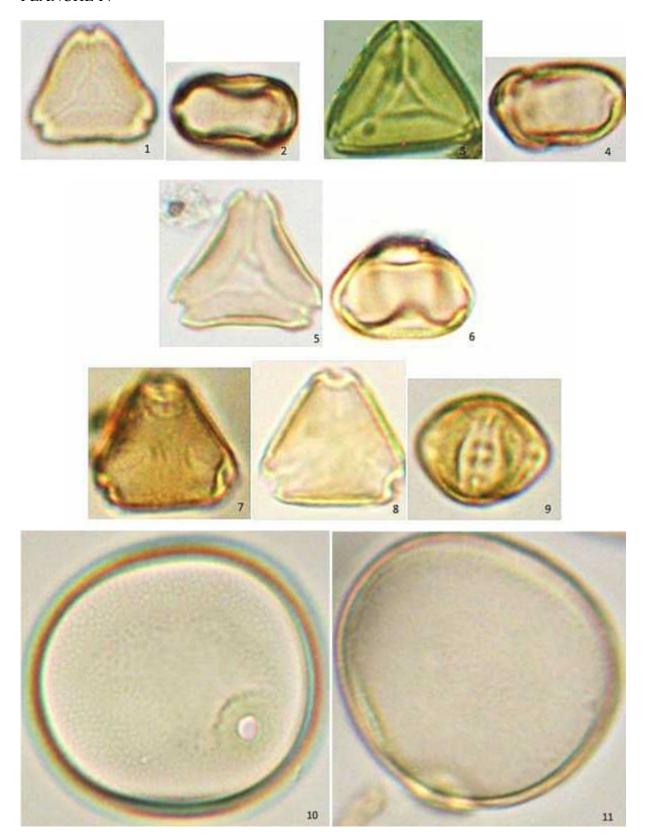

Figures: **1,2.** Malvaceae, *Adansonia* sp1 (grandidieri). – **3,4.** Fabaceae, *Mimosa* sp. – **5-7.** Sapindaceae, *Litchi sinensis* – **8,9.** Pandanaceae, *Pandanus* sp.

PLANCHE III

Figures : 1,2. Malvaceae, *Adansonia* sp2 (za/rubrostipa). - 3-5. Flacourtiaceae, *Aphloia theiformis*. - 6,7. Fabaceae, *Tamarindus indica*.

PLANCHE IV

Figures : **1,2.** Myrtaceae, *Melaleuca quinquenervia* - **3,4.** Myrtaceae, *Eugenia* sp. - **5,6.** Myrtaceae, *Eucalyptus* sp - **7-9.** Rhamnaceae, *Zizyphus* sp- **10,11.** Poaceae, *Sorghum* sp

Chapitre IV : DISCUSSION DES RESULTATS

D'après le présent travail, une typologie des miels a été faite à partir des résultats de l'analyse pollinique. La discussion porte sur la méthodologie utilisée et sur l'authentification des miels monofloraux identifiés.

I. LIMITE DE LA METHODOLOGIE UTILISEE

I.1 VERIFICATION DES NOMS COMMERCIAUX DES MIELS

Dans cette étude, les analyses polliniques ont permis d'identifier 5 types de miels monofloraux (miels monofloraux de litchi, de macaranga, d'eucalyptus, de schinus et de tamarin) et 2 types de miels polyfloraux (mille fleurs et baobab).

Parmi les échantillons analysés, 70% des échantillons (41 échantillons) répondent aux appellations commerciales. 18 échantillons ne correspondant pas à leur appellation d'origine :

- 2 échantillons (MG026, MG042) présumés litchi de Madagascar mais présentant la dominance des pollens d'eucalyptus dans leurs spectres sont donc des miels d'eucalyptus.
- Le pollen de *Macaranga* sp domine dans 4 échantillons (MG004, MG005, MG043, MG050) présumés miels de litchi de Madagascar.
- Les miels présumés d'acacia de l'île Rodrigues présentent des pollens dominants mais ne présentent pas de pollens d'*Acacia* sp dans leurs spectres. L'échantillon RD032 présente la dominance du pollen *Tamarindus indica*. Pour l'échantillon RD033, le pollen dominant est *Casuarina* sp.
- Le pollen d'*Eucalyptus* sp domine dans l'échantillon RD031 présumé tamarin de Rodrigues.
- Les 5 miels (MG001, MG031, MG033, MG052, MG116) présumés de baobab de Madagascar ne présentent pas de pollen dominant et ont été qualifiés comme étant des miels polyfloraux ou mille fleurs.

Les exceptions observées où les noms donnés aux miels n'ont pas été vérifiés par les analyses polliniques peuvent être inhérentes à une erreur d'échantillonnage ou d'étiquetage mais une connaissance de la flore de l'environnement du rucher aurait également beaucoup aidé dans l'interprétation des analyses polliniques. Par ailleurs, beaucoup de types polliniques ont été identifiés au niveau de la famille seulement ou ont été classés comme « type » ou « cf. ».

I.2 AUTHENTIFICATION DES MIELS

Trois sortes d'analyses sont indispensables pour l'authentification des miels : les analyses polliniques, les analyses physico-chimiques et les analyses sensorielles. Une typologie des miels a pu être faite à partir de l'interprétation des spectres polliniques cependant, à partir des résultats de recherches antérieures, des remarques peuvent être faites concernant les échantillons étudiés.

A. LES MIELS MONOFLORAUX

a. Cas des miels de litchi

Outre les 16 échantillons monofloraux de litchi, deux échantillons de l'île de la Réunion R003 et R023 ne présentent pas de pollen dominant mais présentent respectivement une fréquence relative du pollen de *Litchi sinensis* entre 19,52% à 33,51% devraient être classés parmi les miels monofloraux de litchi. En effet, selon SCHWEITZER (2011), la présence d'une espèce grande productrice tel que *Mimosa pudica* de pollen peut fortement diminuer le pourcentage de *Litchi sinensis* jusqu'à 10%. Tel serait également le cas pour R003 avec *Albizzia* sp (Fabaceae) et pour R023 avec *Eucalyptus* sp (Myrtaceae) qui sont à classer parmi les miels monofloraux de litchi.

Il apparait ainsi important de pouvoir comparer les caractéristiques organoleptiques (couleur, odeur et goût) des miels d'une même appellation.

b. Cas des miels de macaranga

Certains miels présumés miels de litchi de Madagascar soient 4 échantillons (MG004, MG005, MG043 et MG50) ont présenté *Macaranga* sp comme pollen dominant et ont été identifiés comme miels monofloraux de macaranga. La présence simultanée des pollens de *Litchi sinensis* (23,82 % à 27,4%) et de ceux de Macaranga sp (49,13% à 58,89%) dans les 4 échantillons peut être expliquée par des périodes de floraison semblable ou qui se recouvre pour les deux plantes.

Le genre *Macaranga* est représenté par environ 300 espèces. Environ 13 espèces sont rencontrées dans l'Est de Madagascar (région de production des miels de litchi). Les fleurs portent de nombreuses étamines (SCHATZ, 2001).

Des miels de macaranga ont été déjà rencontrés lors d'analyses de miels récoltés à l'Est et dans le Sud-Est de l'île (ANDRY MISANDRATRA, 2012).

Les caractéristiques d'un miel monofloral de macaranga ne sont pas signalées dans la littérature à notre connaissance. Comme des récoltes de miels présumés de macaranga est possible dans le sud-est de Madagascar, une étude de ce miel est à faire et à compléter par l'étude de la biologie florale des espèces du genre *Macaranga* existant dans la région. Il convient également d'effectuer une comparaison des caractères physico-chimique et organoleptique entre des miels à dominance de pollen de *Litchi* et à dominance de pollen de *Macaranga*.

c. Cas des miels d'eucalyptus

Les données obtenues dans cette étude confirment les résultats obtenus par PERSANO ODDO (1995) indiquant que les miels d'eucalyptus sont riches en pollen et appartiennent à la classe III ou IV de MAURIZIO. Selon LOUVEAUX et ABED (1984) la fréquence relative des pollens d'*Eucalyptus* est généralement élevée dans les miels d'eucalyptus et peut atteindre 100%.

Les miels d'eucalyptus sont produits dans de nombreux pays car cette plante présente une large répartition dans le monde. Ce sont des miels de couleur ocre jaune foncé, à granulation grossière et à sucrosité moyenne légèrement doux (GONNET, 1982).

d. Cas du miel de schinus

Le miel présumé d'eucalyptus de la Réunion (R028) a été considéré comme un miel de *Schinus* avec une fréquence relative égale à 46,3%.

Les analyses sensorielles effectuées par BARDIN et al (2007) ont révélé que les miels de schinus existent à l'île de la Réunion et sont récoltés du mois de mars à mai. Le miel analysé présente une coloration jaune orangé avec reflets verts, à cristallisation lente et grossière, à odeur assez faible et peu persistante, à connotation végétale.

Schinus est un arbre originaire de l'Amérique du sud et a été introduit dans les pays du Mascareignes (www.tropicos.com). Des miels de schinus sont produits en Nouvelle-Calédonie et en Australie (CLEMENT, 2002).

e. Cas du miel de tamarin

L'échantillon de miel présumé d'acacia de Rodrigues (RD033) a été considéré comme un miel de tamarin avec une fréquence relative de 55,73%.

Tamarindus indica est un arbre tropical cité par CRANE (1990). Le miel produit aurait une coloration foncée.

B. LES MIELS POLYFLORAUX OU MILLE FLEURS

Les miels polyfloraux ne présentent pas de pollen dominant. Ces miels sont donc constitués de plusieurs sources de nectar.

Pour cette étude, ce type de miel est représenté par 9 échantillons de miels appelés miels mille fleurs de l'île Rodrigues, et 1 échantillon de Madagascar.

Les miels présumés de baobab de Madagascar (MG001, MG033, MG034, MG054, MG116), du point de vue palynologique, sont classés parmi les miels polyfloraux car ils ne présentent pas de pollen dominant.

Par ailleurs, l'échantillon MG116 présente des pollens caractéristiques des formations forestières d'altitude du Domaine du Centre : *Ilex mitis* (Aquifoliaceae), *Bakerella* sp (Loranthaceae). La présence simultanée des pollens précédents et *Adansonia* sp permet d'avancer que cette échantillon pourrait être produit dans la zone de transition entre le Domaine du Centre et le Domaine de l'Ouest.

La principale source de nectar de ce type de miel reste à confirmer avec l'étude de la biologie florale de la plante ainsi qu'une étude du butinage de l'abeille sur ces fleurs. Une analyse des caractères physico-chimiques et organoleptiques des miels peut aussi aider dans la typologie de ces miels.

A Madagascar, il existe 7 espèces de baobab dont 6 sont endémiques : Adansonia za, A. grandidieri, A. suarezensis, A. madagascariensis, A. rubrostipa, A. perrieri.

L'espèce A. digitata est une espèce commune à l'Afrique et à Madagascar.

En conclusion, il apparait que la typologie établie au cours de cette étude pourrait être complétée efficacement par des analyses physico-chimiques et des analyses sensorielles. Les données obtenues lors de cette étude pourraient contribuer à l'élaboration de nouvelles méthodes telles que le Spectrophotomètre Proche Infra-Rouge ou SPIR pour une reconnaissance rapide des miels. Mais l'établissement des bases de données pour la mise en place de la technique SPIR nécessiterait un nombre plus élevé d'échantillons.

II. LES INDICATEURS DE L'ORIGINE GEOGRAPHIQUE

Des taxons caractéristiques ont été mis en évidence dans un ensemble de miels de même type provenant d'une région déterminée. Ces taxons permettent de séparer les miels de même appellation mais de provenance différente.

Les analyses polliniques ont montré que les pollens de différents genres appartenant à la famille des Myrtaceae peuvent être considérés comme caractéristiques de l'ensemble des échantillons étudiés.

Il est à noter que la majorité des sources de nectar des miels monofloraux de Madagascar et des Mascareignes, analysés dans cette étude, proviennent de plantes introduites : *Litchi sinensis*, *Eucalyptus* sp ou *Schinus terebenthifolius*.

Dans cette étude, certains caractères polliniques ont permis de séparer les différentes productions.

Les miels de litchi de Madagascar et ceux de la Réunion sont caractérisés par la présence du pollen de *Macaranga* sp dans leurs spectres polliniques avec une fréquence allant de 7,71% à 25,48% pour les échantillons de Madagascar et de 2,39% à 5,86% pour ceux de la Réunion.

Alors que les miels de litchi de Madagascar sont caractérisés par l'association de *Litchi* sinensis avec *Mimosa* sp, *Aphloia theiformis* et *Elaeis guineensis*, les miels de litchi de la Réunion présente l'association de *Litchi sinensis* avec *Casuarina* sp et de *Schinus terebenthifolius*.

Le pollen de *Mimosa* sp est présent dans les échantillons de miels de litchi de Madagascar avec une fréquence relative variant de 1,09% à 23,38% pour une fréquence d'apparition de 80% dans l'ensemble des échantillons de miels. Ce pollen n'est pas présent dans les échantillons de miels de litchi de la Réunion. Donc pour cette étude, la présence de *Mimosa* sp dans le spectre des miels caractérise les miels de litchi de Madagascar.

De même, le pollen d'*Aphloia theiformis*, espèce endémique de Madagascar, est présent dans les spectres des miels de litchi de Madagascar et peut être considéré comme un marqueur de l'origine géographique de ces miels.

Pour les miels d'eucalyptus une différenciation a pu être mise en évidence entre les échantillons de Madagascar et ceux de l'ile Rodrigues.

Les miels d'eucalyptus de Madagascar présentent l'association du pollen d'*Eucalyptus* sp avec *Aphloia theiformis, Taraxacum* sp et *Type Poaceae*, alors que les miels d'eucalyptus de Rodrigues étudiés se caractérisent par l'association du pollen d'*Eucalyptus* sp avec les pollens de *Casuarina* sp, *Melaleuca quinquenervia* et *Pandanus* sp.

Pour un même type de miel la richesse en pollen varie en fonction du lieu de production.

Le nombre de taxons dans les miels de litchi de la Réunion analysés est de 38 types polliniques répartis en 25 familles de plantes et 27 genres. Les miels de litchi de la Réunion sont regroupés dans la classe II (20.000 < N < 100.000).

Pour les miels de litchi de Madagascar analysés, le nombre de taxons rencontrés est de 42 types polliniques appartenant à 23 familles de plante et 27 genres. Les miels de litchi de Madagascar sont de classe III (100.000 < N < 500.000).

Les miels de litchi de Madagascar analysés sont plus riches et plus variés en pollen que les miels de litchi provenant de la Réunion. Ceci reflète la flore existant dans les deux îles car la production de miel d'une région dépend de la flore mellifère et des conditions écologiques et climatiques qui influencent la sécrétion nectarifère (ZIMMERMAN, 1988).

Les miels d'eucalyptus de Madagascar analysés contiennent 11 types polliniques. Ils appartiennent à 8 familles et 9 genres. Les miels d'eucalyptus de Madagascar appartiennent à la classe IV (500.000 < N < 1.000.000).

Pour les miels d'eucalyptus de Rodrigues analysés, le nombre de taxons est de 54 répartis en 27 genres et 23 familles. Les miels d'eucalyptus de Rodrigues appartiennent à la classe III/IV (100.000 < N < 1.000.000).

Les miels d'eucalyptus de Rodrigues sont plus riches en pollen que les miels d'eucalyptus de Madagascar. Le pourcentage en pollen d'*Eucalyptus* des miels de Madagascar atteint les 94% alors qu'il plafonne à 81% pour les échantillons de Rodrigues. Donc les miels d'eucalyptus de Madagascar sont plus riches en pollen d'*Eucalyptus* que les miels d'eucalyptus de Rodrigues.

Il est à noter que la flore mellifère observée dans les spectres des miels de Madagascar est pour la majorité constituée par des taxons appartenant à des formations forestières alors que les miels des deux autres îles sont constitués par des plantes de reboisement ou de plantation.

La connaissance de la date et les lieux de récoltes des échantillons pourrait apporter plus de précision dans l'interprétation de l'origine géographique des miels.

CONCLUSION GENERALE

Le présent travail a été réalisé au laboratoire de Palynologie Appliquée à l'Université d'Antananarivo et porte sur l'analyse pollinique de 59 échantillons de miels en provenance de Madagascar, de la Réunion et de l'île Rodrigues.

Les résultats obtenus ont permis de connaître la composition pollinique des miels étudiés. Le nombre de taxons rencontrés dans l'ensemble des échantillons est de 124 types polliniques repartis en 60 familles de plantes. Les échantillons de Madagascar ont montré 65 types polliniques, ceux de Rodrigues sont constitués par 56 taxons et ceux de la Réunion contiennent 53 types polliniques.

Pour l'origine florale des miels, l'interprétation des résultats des analyses polliniques des miels a permis de séparer les miels étudiés en miels monofloraux et miels polyfloraux. Les miels monofloraux rencontrés ont été des miels monofloraux de litchi (Madagascar, Réunion), des miels monofloraux d'eucalyptus (Madagascar, Rodrigues), des miels monofloraux de macaranga (Madagascar), le miel monofloral de schinus (Réunion) et le miel monofloral de tamarin (Rodrigues). Les miels polyfloraux comprennent les miels de mille fleurs de Rodrigues et de Madagascar ainsi que les miels de baobab de Madagascar. Ainsi, au total, 7 types de miels ont été identifiés lors de l'étude.

Du point de vue origine géographique, la majorité des miels a été caractérisée par la présence des pollens de la famille des Myrtaceae dans leur spectre. La provenance des miels a été caractérisée par des associations de pollens marqueurs. Pour un même type de miels, tel que les miels de litchi, des différences au niveau de leur contenu pollinique ont pu être observées au niveau des pays.

D'après les résultats des analyses polliniques, 70% des échantillons soit 41 miels étudiés répondent aux appellations florales données par les opérateurs. Les problèmes et les limites inhérents à l'authentification des miels ont pu être soulevés.

Si ce travail a apporté des connaissances de la flore pollinique des miels des iles de l'Océan Indien, il n'est pas exhaustif et doit être complété. Des approches méthodologiques pour la valorisation des miels des Madagascar et des îles Mascareignes ont pu être abordées dans cette étude. Les recommandations suivantes sont proposées :

- une approche multidisciplinaire devrait être adoptée pour une meilleure connaissance des miels : analyses polliniques, analyses physico-chimiques et tests sensoriels.
- un inventaire biologique dans les sites de production permettrait d'obtenir plus de précision sur la détermination des pollens et pour l'interprétation des résultats.
- un plan de prélèvement méthodique et un nombre suffisant d'échantillons de miels lors d'études ultérieures contribueraient à obtenir une image fidèle des ressources mellifères des différents milieux.

Vue la richesse de la biodiversité des îles de l'Océan Indien, la production d'une infinité de types de miels est possible ainsi la recherche sur les miels est à continuer afin de mettre en évidence des miels originaux.

BIBLIOGRAPHIE

- ANDRIANARIVELO A., 1998. Contribution à l'étude du potentiel mellifère en vue de l'amélioration de l'apiculture au tour de la réserve spécial de Beza Mahafaly. Mém. E.S.S.A., Univ. Antananarivo, 67p.
- ANDRY MISANDRATRA, 2012. Analyses polliniques en vue de la création des référentiels commerciaux des miels malgaches : cas des miels de litchi. Mém. DEA, Fac.Sci., Univ. Antananarivo, 55p.
- Association des Palynologues de Langue Française (A.P.L.F.), 1974. Pollen et spores d'Afrique tropicale. Travaux et documents de géographie tropicale. Centre d'Etude de Géographie Tropicale, Talence (France), 283p.
- BARDIN C., SCHWEITCHER P. & DUVAL S., 2007. Abeilles de France.
- BATTESTI, M. J. and GOEURY, C., 1992. Efficacité de l'analyse mélissopalynologique quantitative pour la certification des origines géographique et botanique des miels : le modèle des miels corses. Rev. Palaeobot. Palynol. 75: 77–102.
- BELMIN R., 2010. Intérêt et faisabilité d'une Indication Géographique pour le miel de Rodrigues. MASTER FAGE, Biologie et Ecologie pour la Forêt, l'Agronomie et l'Environnement, Spécialité FGE, Univ. Henri Poincaré, Nancy, 72 p.
- BONNEFILLE R. & RIOLLET G., 1980. Pollens des savanes d'Afrique orientale. CNRS, Paris, 253p.
- CHOPINET, R, GRISUARD, P., GUILLAUMIN, A., SCHNEITER, P., 1964. Le bon jardinier 2. La maison rustique (Ed), Paris, 1663p.
- CLEMENT M.C., 2002. Melissopalynologie en Nouvelle-Caledonie, importance des spectres polliniques dans la typification des miels. Mém. E.P.H.E., 77p.
- CRANE, E., 1990. Bees ad beekeeping. Science, Practice and World resources. Heinemann News Oxford, London, Melbourne. 614p.
- ERDTMAN G., 1952. Pollen morphology and plant taxonomy. Angiosperms, AlmqvistetWicksell, Stockholm, 539p.
- Filières Animales, Conseil d'administration, 2010. Programme sectoriel apicole, Réunion, 2011-2013.

- GADBIN. 1979 L'intérêt de l'acétolyse en mélissopalynologie. *Apidologie*, 1979, 10(1) : 23-28.
- GIRARD J.C. & SIGALA P., 1991. Les principales formations végétales. Revue Bois et Forêts des Tropiques, n°229 : 15-22.
- GONNET M., 1982. Le miel : composition, propriétés, conservation. INRA station expérimentale d'apiculture, 1982 : 1-18.
- GUINET, P.H, CARATINI, Cl., 1974. Pollen et spores d'Afrique tropicale, Centre d'Etudes de Géographie Tropicale, CNRS, n°16, 282p.
- HUMBERT, 1955. Les territoires phytogéographiques de Madagascar. Colloques internationaux du CNRSLIX : les divisions écologiques du monde. *Année biologique*, 3e sér. 31 : 329-448.
- KAUHAUSEN-KELLER D., RUTTNER F., KELLER R., 1997. Morphometric studies on the microtaxonomy of the species *Apis mellifera* L. *Apidologie*, 28: 295-307
- LOUVEAUX J. 1968. L'analyse pollinique des miels. *Les produits de la ruche*. Masson et Compagnie, Paris, Tome III : 325-362.
- LOUVEAUX J., MAURIZIO A. & VORWOHL C., 1970. Commission internationale de botanique apicole de l'U.I.S.B. Les méthodes de la mélissopalynologie. *Apidologie*, 1970, 1(2): 211-227.
- LOUVEAUX J., MAURIZIO A. & VORWOHL C., 1978. Methods of melisopalynology. International Commission for Bee Botany of I.U.B.S. *Bee world*, 54(4): 139-154.
- LOUVEAUX, J. & ABED, L., 1984. Les miels d'Afrique du Nord et leur spectre pollinique. *Apidologie* 15 (2) : 145-170.
- LOW, N. H., SCHWEGER, C. & SPORNS, P., 1989. Precautions in the use of melissopalynology. *Journal of Apiculture*. Res. 28(1): 50–54.
- MARECHAL P. & MÉTAS E., 2008. Miels Bourbons, La Réunion. *L'Apiculture dans le Monde*, apisite.online.fr.
- MAUNDER, J., CLUBBE, C., HANKAMER, C., GROVES, M., 2002. Scope of the book. *In*: M. Maunder, J. Clubbe, C. Hankamer, M. Groves, <u>Plant Conservation in</u> the Tropics, perspectives and pratices, Eds, RBG, Kew: xxxiii xxvi.

- MAURIZIO, A., 1949. Beiträge zur quantitativen Pollenanalyse des Honigs. *Beih. Schweiz. Bienenztg*, 2: 320-421.
- MAURIZIO, A. 1968. La récolte et l'emmagasinage du pollen par les abeilles. *In* : <u>Traité de Biologie de l'Abeille</u>. Tome III. Masson Ed, Paris, pp 168-173.
- MULLER, J., SCHULLER, M., STRAKA, H., FRIEDRICH, B., 1989. Palynologia Madagassica et Mascarenica, Fam. 60, 98 ter, 111, 120, 182, 182 bis, 183, 189, Addenda. *Tropische und subtropische Planzenwelt* 219p.
- MYERS, N., MITTERMEYER, C.G., da FOSECA, G.A.B. et KENT, J., 2000. Biodiversity hotspots for conservation priorities. *Nature* 403: 853 858.
- PERSANO ODDO L., PIAZZA M.G., SABATINI A.G., ACCORTI M., 1995. Characterization of unifloral honeys. *Apidologie* 26 (1995): 453 465.
- PUNT W., 1962. Pollen morphology of Euphorbiaceae with special reference to taxonomy. Webbia 7, 116p.
- PUNT W., BLACKMORE S., NILSSON S. & LE THOMAS A., 1994. Glossary of pollen and spore terminology. LPP Foundation, UTRECHT, 1994. LPP contributions séries n°1, 72p.
- RAHARIMBOLA R., 2001. Application de l'analyse pollinique aux miels de la région d'Ambohimiadana. Mém. DEA, Fac. Sci., Univ. Antananarivo, 94p.
- RALIMANANA H., 1994. Contribution à la connaissance de l'apiculture et à la mélissopalynologie dans le parc national de Ranomafana. Mém. DEA, Fac. Sci., Univ. Antananarivo, 90p.
- RAMAMONJISOA R. Z., 1992. Analyses polliniques et comportement d'Apis mellifera var. unicolor dans la végétation de différents sites des hauts plateaux malgaches. Thèse, 3^{ème} cycle, Univ. Antananarivo, 152p.
- RANDRIANARIVELO H., 2010. Application de l'analyse pollinique aux miels de différentes régions de Madagascar. Mém. DEA, Fac. Sci., Univ. Antananarivo, 70 p.
- RAZAFINDRAKOTO N., 2005. Les plantes mellifères et les caractéristiques des miels produits dans la région nord-ouest de Madagascar (cas de Boriziny). Mém. DEA, Fac. Sci., Univ. Antananarivo, 89p.

- Rodrigues Regional Assembly, 2006. Final Diagnosis Report for Sustainable Integrated Development Plan for Rodrigues. published by UNDP/KPMG.
- RUTTNER F. KAUHAUSEN –KELLER D, KELLER R., 1997. Morphometric studies on the microtaxonomy of the species *Apis mellifera* L. *Apidologie*, 1997, 28: 295-307.
- RUTTNER, F., 1987. Biogeography and taxonomy of honeybees. Springer-Verlag, New York, Berlin, Heldeberg, 284p.
- SCHATZ G., 2001. Flore générique des arbres de Madagascar. MBG, Antananarivo, Madagascar, 503p.
- SCHWEITZER, P., 2011. Le miel de litchi. Abeille de France 2011: 17-19.
- STRAKA H. & FRIEDRICH B., 1984. Palynologia Madagassica et Mascarenica. Fam. 17-49. *Tropische and subtropische planzenwelt*, 49: 401-485.
- STRAKA H. & FRIEDRICH B., 1988. Palynologia Madagassica et Mascarenica. Fam. 65-87. *Tropische and subtropische planzenwelt*, 61: 6-117.
- STRAKA H. & SIMON A., 1969. Palynologia Madagassica et Mascarenica. Fam. 184-188. *Pollen et Spores*, Vol XI (2): 229-232.
- STRAKA H., 1966. Palynologia Madagassica et Mascarenica. Fam 122-125. *Pollen et Spores*. Vol, IX (1): 61-70.
- STRAKA H., FRIEDRICH B., LIENAN K., 1986. Palynologia Madagassica et Mascarenica. Fam. 167-181. *Tropische and subtropische planzenwelt*, 55: 317-470.
- VERGERON P., 1964. Interprétation statistique des résultats en matière d'analyse pollinique des miels. *Ann. Abeille*, 1964, 7(4): 349-365.
- VON DER OHE W., PERSANO ODDO L., PIANA M. L., MORLOT M. & MARTIN P., 2004. Harmonized methods of melissopalynology. *Apidologie* 35: 18-25.
- ZIMMERMAN, M., 1988. Nectar production, flowering phenology and strategies for pollination. *In*: J. Lovett and L. Lovett, <u>Plant reproductive ecology</u>. <u>Patterns</u> and strategies. Eds. Oxford University Press, Oxford, UK. 485p.

ANNEXES

ANNEXE I: Calendrier des récoltes de miels

Tableau. 1: Calendrier des récoltes des miels à Madagascar

Mois						_			_			
Zone	Janv.	Fev.	Mars	Avr.	Mai	Jun.	Juil.	Août	Sept.	Oct.	Nov.	Déc.
de production												
Est	1											
Hautes terres								3				
Côte ouest			4	4								
	5											
Nord-ouest								6				
Sud-ouest									,	7		
	8											

1 : miel de niaouli (*Melaleuca quinquenervia*); 2 : miel de litchi (*Litchi sinensis*) ; 3 : miel d'Eucalyptus ; 4 : miel de ahidambo (*Heteropogon contortus*) et miel de kapokier (*Ceiba petandra*) ; 5 : miel de mokonazy (*Zizyphus mauritiana*) ; 6 : miel de palissandre (*Dalbergia* sp.); 7: miel de sakoa (*Poupartia caffra*) ; 8 : miel de tsinefo (*Zizyphus spinachristi*).

Tableau. 2: Calendrier des récoltes des miels à l'île de la Réunion

Mois Zone de production	Janv.	Fev.	Mars	Avr.	Mai	Jun.	Juil.	Août	Sept.	Oct.	Nov.	Déc.
Toute l'île				1								
Saint-Benoit												
Saint-Joseph	int-Joseph			2								
Saint-Louis		111:					1 1 1: 1					

1 : miel de baie rose (Schinus terebenthifolius); 2 : miel de litchi (Litchi sinensis)

Tableau. 3: Calendrier des récoltes des miels à Rodrigues

Mois Zone de production	Janv.	Fev.	Mars	Avr.	Mai	Jun.	Juil.	Août	Sept.	Oct.	Nov.	Déc.
											1	
Toute l'île	2											2
											3	

1 : miel toutes fleurs, 2 : miel de pongame (*Pongamia glabra*), 3 : miel d'eucalyptus

ANNEXE II : Liste de principales espèces mellifères avec noms latins et vernaculaire classées par ordre alphabétique

Tableau-1: Les espèces mellifères rencontrés dans les trois îles étudiés

Nom scientifique	Nom vernaculaire
Acacia sp	Acacia ou mimosa
Adansonia sp	Baobab
<i>Albizzia</i> sp	Arbre de soie ou mimosa
Aphloia theiformis	The vert
Casuarina sp	Casuarina
Ceiba pentandra	Kapokier
Citrus sp	Agrume
Coffea sp	Café
Dalbergia sp	Palissandre
Elaeis guineensis	Palmier
Eucalyptus sp	Eucalyptus
Heteropogon contortus	Ahidambo
Litchi sinensis	Litchi, letchis
Macaranga sp	Mokaranany
Melaleuca quinquenervia	Niaouli
Mimosa sp	Mimosa
Pongamia glabra	Pongame
Poupartia caffra	Sakoa
Schinus sp	Baie rose
Sorghum sp	Sorgo
Syzygium jambos	Jambrosat
Zizyphus mauritiana	Mokonazy
Zizyphus sp	Jujube
Zizyphus spinachristi	Tsinefo

ANNEXE III: Mesure volumétrique du culot

Une dilution 10x le volume du culot est nécessaire pour l'observation au microscope. Une mesure volumétrique est faite par une estimation approximative qui présente deux cas :

 $\underline{I^{er} \ cas}$: Le culot forme une pellicule fine au fond du tube (< 10μ l). On introduit 20μ l de glycérine phénolée dans ce tube. L'ensemble est bien mélangé à l'aide de l'extrémité du cône de prélèvement de la micropipette. La suspension est aspirée et on lit le volume V total.

- Si V est inférieur à 25μl, le contenu du cône est porté directement sur la lame ; les pollens restants sont récupérés en introduisant dans le tube 20μl de glycérine phénolée.
- Si V dépasse 25µl, le contenu du cône est réintroduit dans le tube et le volume total est ramené à :
 - 100μl, si V est compris entre 25μl et 30μl
 - 150μl, si V est compris entre 30μl et 35μl.

Il est nécessaire de prélever 50 µl pour les observations microscopiques.

 $\underline{2^{\grave{e}me}}$ cas: Le culot est relativement important, et forme une couche d'une certaine épaisseur, dans ce cas un volume V_1 de glycérine phénolée variable selon l'épaisseur du culot est introduit dans le tube :

- Si l'épaisseur du culot est entre 0.5mm à 5mm, la dilution est faite dans un volume v1 égal à 100µl de glycérine.
- Si l'épaisseur du culot mesure entre 5mm à 10mm, V_1 est compris entre 200 et $300\mu l$.
- Si le culot a une épaisseur supérieure à 10mm, la dilution est faite dans 400 et 500µl de glycérine phénolée.

Le mélange culot et glycérine est réaspiré dans la micropipette et le volume V_2 est noté. Le volume V du culot est donné par la formule

$$V(ml) = V_2 - V_1$$
 $(V_2 = volume total du culot dilué - $V_1 = volume du glycérine ajouté)$$

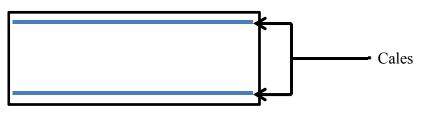
Exemple: RD005

$$V_1 = 150 \mu l$$
 $V_2 = 170 \mu l$

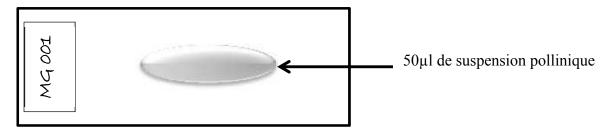
$$V = V_2 - V_1 = 20 \mu l$$

Il faut que le culot soit dilué avec 200 μ l de glycérine phénolée, donc il reste à ajouter 50 μ l de glycérine car 150 μ l est déjà dans le tube. Le volume final est 200 μ l + 20 μ l = 220 μ l. Ce volume du culot dilué 10 fois sera utilisé dans l'analyse quantitative.

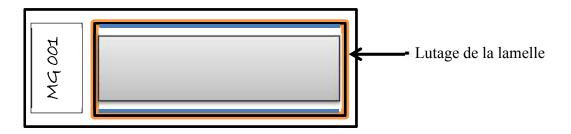
N.B : 50 µl du mélange obtenu est prélevé pour les observations microscopiques.


ANNEXE IV: Préparation des montages

IV.1 Montage mobile (dans la glycérine phénolée):


Deux cales sont tracées sur les bords des deux grands côtés de la lamelle 24 x 50mm à l'aide d'un liquide de lutage.

50μl de pollens dilués sont aspirés avec une micropipette et ensuite étalés en une goutte au milieu de la lame.

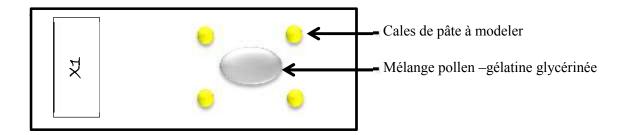

La lame est recouverte par la lamelle préalablement calée répartissant ainsi les grains de pollens sur toute la surface de la préparation. Le montage est ensuite luté sur les quatre côtés avant l'observation au microscope.

Préparation de la lamelle

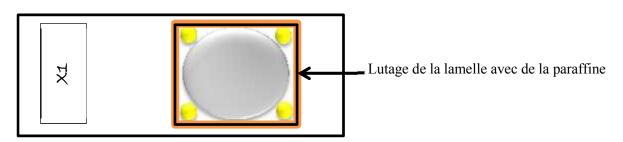
Préparation de la lame

Montage mobile

IV.2 Montage fixe (dans la gélatine glycérinée)


Un fragment de glycerine gelatinée est introduit dans le tube à l'aide d'une aiguille platinée.

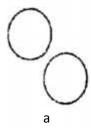
Le mélange gélatine glycérinée – pollen est transféré sur une lame porte objet, qui est ensuite déposée sur une plaque chauffante pour rendre liquide la préparation.

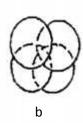

Quatre points sont déposés sur la lame afin d'aménager un espace entre la lame et la lamelle.

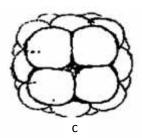
La lame est recouverte d'une lamelle 24mm x24mm.

La préparation est enfin lutée à l'aide de paraffine fondue.

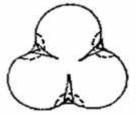
Préparation de la lame

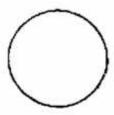

Montage fixe


ANNEXE V: Terminologie de la palynologie (Punt & al en 1994)


I. Forme et symétrie

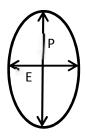
La forme du grain de pollen est variable, on peut avoir :


- des grains de pollen simples (les grains se séparent tout de suite après la méiose) : eumonades (a) ;
- des grains composés (les grains formés ne se séparent pas). On a les tétrades (b) (grains groupés en 4), polyades (c) (formés par plusieurs grains).



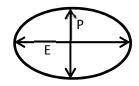
En vue polaire, la forme du grain de pollen est variable :

Pollen lobé


Pollen circulaire

Pollen triangulaire

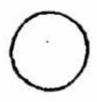
En vue équatoriale, le pollen représente un volume pour lequel on définit deux axes :


- l'axe polaire P ligne joignant les deux pôles ; le pôle proximal étant celui qui est situé vers le centre de la tétrade mère, le pôle distal lui étant opposé à l'extérieur.
- L'axe équatorial E perpendiculaire à l'axe P.

Pollen longiaxe

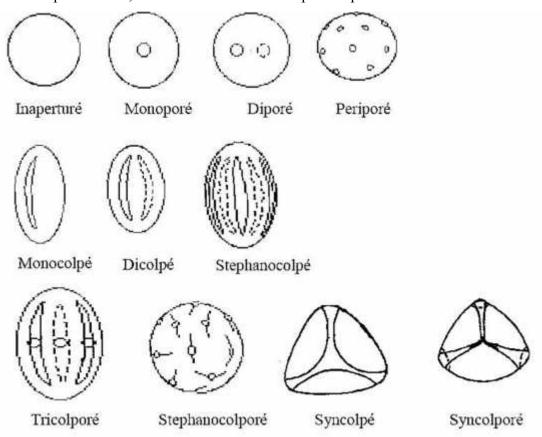
Pollen équiaxe ou sphéroïdal

Pollen bréviaxe ou ovoïde


La symétrie des pollens est définie par l'emplacement des zones germinales ou apertures.

Pollen hétéropolaire

Pollen apolaire

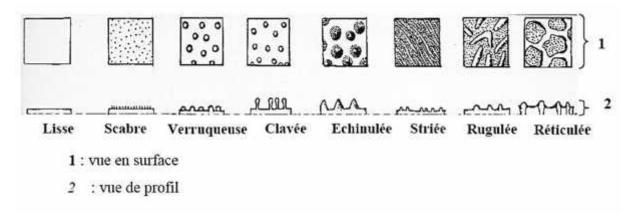


Pollen isopolaire

- le pollen apolaire : sans plan de symétrie ;
- le pollen isopolaire : vues polaires identiques et symétriques par rapport au plan équatorial ;
- le pollen hétèropolaire : présentant un axe de symétrie mais les vues polaires sont différents au pôle proximal et au pôle distal.

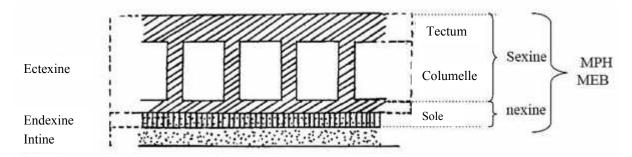
II. Apertures ou zones germinales

L'aperture est une zone de moindre résistance, due à l'amincissement ou à la disparition de l'exine, qui permet la sortie du tube pollinique (ERDTMAN, 1952). Ces apertures peuvent se situer aux pôles, à l'équateur ou être réparties sur l'ensemble du grain. Les ectoapertures affectent la couche la plus externe de l'exine, l'ectexine tandis que les endoapertures affectent sa couche la plus interne, endexine. La forme de l'aperture peut être variable.

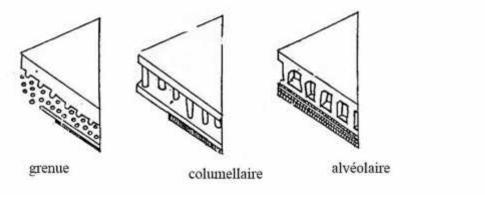

III.Exine

III.1 Ornementation de l'exine

L'exine est une membrane externe, inerte et très résistante du pollen, sa morphologie permet la caractérisation des pollens. La méthode de L.O. ou Lux Obscuritas (lumière,


obscurité) permet l'observation de l'ornementation de l'exine par la mise au point de la vis micrométrique du microscope.

L'exine peut être :



III.2 Structure de l'exine

La structure de l'exine définit la constitution de ses différentes couches.

Suivant les groupes taxonomiques, la structure de la couche infratectale est différente :

ANNEXE VI: Liste des taxons rencontrés

Tableau_ 1: Liste des taxons rencontrés dans les miels analysés

N°	Taxons	N°	Taxons	N°	Taxons	N°	Taxons
1	Anacardiaceae/Cf Mangifera sp	32	Euphorbiaceae/Cf Astrobuxus sp	63	Myrtaceae/Melaleuca quinquenervia	94	Type Amaranthaceae/Chenopodiaceae
2	Anacardiaceae/Schinus terebenthifolius	33	Euphorbiaceae/Croton sp	64	Myrtaceae/Psidium cattleyanum	95	Type Anacardiaceae
3	Aquifoliaceae/Ilex mitis	34	Euphorbiaceae/Macaranga sp	65	Myrtaceae/Syzigium sp	96	Type Apocynaceae
4	Apocynaceae/Cf Carissa sp	35	Euphorbiaceae/Manihot sp	66	Oleaceae/cf <i>Ligustrum</i> sp	97	Type Asteraceae
5	Aphloiaceae/Aphloia theiformis	36	Fabaceae/Acacia sp	67	Pandanaceae/Pandanus sp	98	Type Bignoniaceae
6	Arecaceae/Cocos nucifera	37	Fabaceae/Albizzia sp	68	Passifloraceae/Adenia cf elegans	99	Type Combretaceae
7	Arecaceae/ <i>Dypsis</i> sp	38	Fabaceae/Cassia sp	69	Passifloraceae/Passiflora sp	100	Type Cucurbitaceae
8	Arecaceae/Elaeis guineensis	39	Fabaceae/Cesalpinia pulcherina	70	Pinaceae/Pinus sp	101	Type Euphorbiaceae
9	Asclepiadaceae/Gonocrypta grévei	40	Fabaceae/Cf Bauhinia sp	71	Plumbaginaceae/Plumbago aphylla	102	Type Fabaceae
10	Ascomycète/Ascobolus	41	Fabaceae/Cf Bremia insignus	72	Poaceae/Sorghum sp	103	Type Lamiaceae
11	Ascospore	42	Fabaceae/Cf <i>Leucaena</i> sp	73	Proteaceae/Faurea sp	104	Type Lythraceae
12	Asteraceae/Bidens pilosa	43	Fabaceae/Cf <i>Trachylobium</i> sp	74	Proteaceae/Grevillea robusta	105	Type Malvaceae
13	Asteraceae/Helychrisum sp	44	Fabaceae/ <i>Dalbergia</i> sp	75	Rhamnaceae/Zizyphus sp	106	Type Melastomataceae
14	Asteraceae/Emilia sp	45	Fabaceae/ <i>Delonix</i> sp	76	Rosaceae/Rubus rosaefolius	107	Type Meliaceae
15	Asteraceae/Psiadia altissima	46	Fabaceae/Mimosa sp	77	Rubiaceae/Alberta minor	108	Type Moraceae
16	Asteraceae/Taraxacum officinale	47	Fabaceae/Tamarindus indica	78	Rubiaceae/ <i>Coffea</i> sp	109	Type Myrtaceae
17	Balsaminaceae/Impatiens sp	48	Flacourtiaceae/Cf Homalium sp	79	Rubiaceae/ <i>Psychotria</i> sp	110	Type Poaceae
18	Boraginaceae/Echiochilon chazaliei	49	Lamiaceae/Ocimum sp	80	Rutaceae/cf <i>Citrus</i> sp	111	Type Pteridophyte
19	Brassicaeae/Cf Brassica sp	50	Loranthaceae/Bakerella sp	81	Sapindaceae/Cf Cardiospermum sp	112	Type Rubiaceae
20	Burseraceae/Canarium sp	51	Loranthaceae/Amyema subalata	82	Sapindaceae/Litchi sinensis	113	Type Rutaceae
21	Burseraceae/Commiphora sp	52	Lythraceae/Cuphea pustulata	83	Spore2	114	Type Sapotaceae
22	Callitrichaceae/Callitriche verna	53	Lythraceae/ <i>Lythrum</i> sp	84	Spore3	115	Type Simarubaceae
23	Caricaceae/Carica papaya	54	Malpighiaceae/cf Rhynchophora sp	85	Spore4	116	Type Sterculiaceae
24	Casuarinaceae/Casuarina sp	55	Malvaceae/Adansonia sp 1	86	Spore5	117	Type Ulmaceae
25	Chenopodiaceae/Chenopodium album	56	Malvaceae/Adansonia sp 2	87	Spore6	118	Type Umbelliferae
26	Cucurbitaceae/Cucumis sp	57	Malvaceae/Cf Ceiba pentandra	88	Spore8	119	Type Vitaceae
27	Cucurbitaceae/Cucurbita sp	58	Malvaceae/Cf Hibiscus sp	89	Theaceae/cf Camellia thea	120	Ulmaceae/Trema
28	Cyperaceae/Cyperus sp	59	Malvaceae/ <i>Dombeya</i> sp	90	Tiliaceae/ <i>Grewia</i> sp	121	Vacciniaceae/Vaccinium sp
29	Deuteromycète/Alternaria sp	60	Moraceae/Cannabis sativa	91	Tiliaceae/sp1	122	Indéterminé1
30	Deuteromycète/Arthrinium sp	61	Myrtaceae/Eucalyptus sp	92	Tiliaceae/sp2	123	Indéterminé4
31	Ericaceae/Philipia sp	62	Myrtaceae/Eugenia sp	93	Type Acanthaceae	124	Indéterminé7

RESUME

Par: Tsiory Mampionona RASOLOARIJAO

Titre du mémoire : « Analyse pollinique des miels de Madagascar et de deux îles des

Mascareignes (île de la Réunion et île Rodrigues)»

Cette étude concerne l'analyse pollinique de 59 échantillons de miels provenant de Madagascar (20 échantillons), de l'ile de la Réunion (8 échantillons) et de l'île Rodrigues (31

échantillons).

L'objectif de la présente étude est d'établir les profils polliniques et d'établir une

typologie des miels des îles étudiés.

De ces analyses, 124 types polliniques répartis dans 60 familles de plantes ont été

recensés.

L'interprétation des résultats des analyses polliniques et les analyses statistiques ont

permis de classer les miels en six types de miels comprenant des miels monofloraux et des

miels polyfloraux. Les miels monofloraux comprennent : des miels de litchi (Madagascar et

ile de la Réunion), de miels de macaranga (Madagascar), des miels d'eucalyptus (Madagascar

et île Rodrigues), des miels de schinus ou baie rose (île de la Réunion). Les miels ayant une

origine composite ont été confirmés pour des miels de mille fleurs de l'île Rodrigues et pour

les miels présumés de baobab de Madagascar.

D'après les résultats des analyses polliniques, 70% des échantillons (41 échantillons)

étudiés répondent aux appellations données par les apiculteurs.

Des associations de pollens indicateurs de l'origine géographique des miels ont été

mises en évidence. En particulier, les miels monofloraux de litchi de l'île de la Réunion sont

caractérisés par les pollens de Casuarina sp et de Schinus terebenthifolius tandis que les miels

monofloraux de litchi de Madagascar se distinguent par la fréquence des pollens de Mimosa

pudica, Aphloia theiformis et Elaeis guineensis.

Une approche multidisciplinaire et un échantillonnage représentatif sont

recommandés pour une meilleure connaissance des miels de Madagascar et des Mascareignes.

Mots clés: Analyse pollinique, types de miels, origine géographique, Madagascar,

Mascareignes.

Encadreur: Docteur RAMAMONJISOA RALALAHARISOA Z.

ABSTRACT

By: Tsiory Mampionona RASOLOARIJAO

Title: "Pollinic Analysis of honeys from Madagascar and of two islands from

Mascareignes (Reunion Island and Rodrigues Island)".

This study relates to the pollinic analysis of 59 honeys samples coming from

Madagascar (20 samples), of Reunion Island (8 samples) and Rodrigues Island (31 samples).

The objective of this study is to recognize the pollinic profiles and to define the type of

honeys of the islands studies.

Through the analysis, 124 pollinic types distributed in 60 plants families were listed.

The interpretation of the results of the pollinic analyses and statistical analyses permit

to find six types of monofloral honeys and polyfloral honeys. Monofloral honeys include

lychee honeys from Madagascar and Reunion Island, macaranga honeys from Madagascar,

eucalyptus honeys from Madagascar and Rodrigues Island and schinus honey from Reunion

Island. Polyfloral honeys have composite origin and include baobab honeys from

Madagascar.

According to the results of the pollinic analyses, only 70% of the samples (41

samples) are conform to the name given by the beekeepers.

Associations of pollens indicate geographical origin of honeys. Monofloral lychee

honeys of Reunion Island are characterized by Casuarina sp and Schinus terebenthifolius

pollens. Mimosa pudica, Aphloia theiformis and Elaeis guineensis pollens are frequent in

lychee honeys from Madagascar.

A multidisciplinary approach and a representative sampling are recommended for a

better knowledge of honeys of Madagascar and the Mascareignes.

Key words: Pollinic analysis, types of honeys, geographical origin, Madagascar,

Mascareignes.

Encadror: Doctor RAMAMONJISOA RALALAHARISOA Z.