Pomegranate mesocarp: a novel protective role against diabetes

Presented by
RAMLAGAN Piteesha
MPhil/PhD Student
Centre for Biomedical and Biomaterials Research
University of Mauritius
Mauritius

Rencontres de l'Agro-alimentaire en Océan Indien 28th Nov -2nd Dec 2016 Saint Pierre, La Réunion

Type II diabetes

Worldwide clinical disorder

Increasing deaths due to diabetic complications

CD36: an AGE receptor

Diabetes Statistics

Estimated number of people with diabetes worldwide

(IDF Diabetes Atlas, 2015)

Diabetes Statistics

Diabetes estimates (20-79 years)	Mauritius	Reunion	Madagascar	Comoros	South Africa
Prevalence, %	22.3	15.8	4.0	9.9	7.6
% of diabetic population	18.3	13.0	1.5	3.6	4.2
Diabetes related deaths	2931.2	NA	5580.2	318.7	57 318.6
Mean diabetes related expenditure (USD), per person	934.3	NA	111.4	152.2	1736.1

Pomegranate

- Antioxidant functional foods with anti-diabetic and antiatherogenic potentials
- Non-edible parts bioactive in multi-assay antioxidant systems

Our focus

Biochemical and antioxidant screening

Rich in polyphenolics

✓ Phenolic content: 416.1 ± 11.4 mg GAE/g lyophilised powder (LP)

✓ Flavonoid content: 310.6 ± 9.1 mg QE/g LP

 ✓ Hydrolysable tannin content: 699.4 ± 16.5 mg TAE/g LP

✓ Proanthocyanidin content: 1.6 ± 0.1 mg CCE/g LP

High antioxidant capacities

Antioxidant capacities:

	PME	Green tea	Black Tea	Gallic acid
FRAP value (mmol)	12.7 ± 1.1 ^b	6.0 ± 0.5^{b}	4.4 ± 0.3^{b}	45.1 ± 4.5 ^a
ORAC value (mmol)	1.1 ± 0.1^{b}	4.0 ± 0.2^{b}	2.2 ± 0.1^{b}	17.7 ± 2.6 ^a

In vitro antioxidant activities of PME and standard antioxidant

In vitro antioxidant activity	IC ₅₀ of PME (µg/mL)	IC_{50} of gallic acid (µg/mL)
Nitric oxide radical scavenging	1.16 ± 0.03 ^a	88.16 ± 2.84 ^b
ABTS radical scavenging	2.74 ± 0.07 ^b	0.53 ± 0.02 ª
DPPH radical scavenging	7.30 ± 0.26 ^b	1.45 ± 0.11 $^{\circ}$
Superoxide radical scavenging	18.77 ± 0.69 ^b	6.48 <u>+</u> 0.24 ^a
Hydroxyl radical scavenging	28.29 ± 1.11 ª	173.89 ± 7.18 ^b
Iron (II) chelating	34.12 ± 1.66 ª	5453.53 ± 191.54 ^b

High antioxidant capacities

OH

Catechin

 Hydroxyl groups and compound configuration (aromatic rings): major determinants of antioxidant potential

PME's effect on 3T3-L1 cell viability

Freeze dried and ground. Exhaustively extracted by 70% methanol for 3 days. Lyophilised.

Cell viability assays

Pomegranate extract (PME)

3T3-L1 preadipocytes: mimicking diabetes-like oxidative stress

PME's effect on 3T3-L1 cell viability

Gallic acid increased 3T3-L1 cell death in dose dependent manner (Hsu *et al.*, 2006)

Proportional conc. of flavonoids in lime juice induced apoptosis of human pancreatic cells (Patil *et al.*, 2009)

Effect of PME on preadipocyte viability. Cytotoxicity assessed by (A) MTT metabolic activity, crystal violet and LDH release and (B) Trypan Blue exclusion methods.

PME's protective effect against oxidative stress

PME decreases ROS production

Effect of PME on (A) intracellular ROS production at (i) 1 h and (ii) 24 h treatment; (B) mRNA expression NOX1.

PME reduces oxidatively modified proteins

Intrinsic antioxidant enzymes: expression & activity

В

CAT activity

40

30

20

###

4202 PMFF H202 PMFF

1.2

0.9

BSANGO PHE

0.7

0.9

BSAMEO

0.7

0.7

#

Effect of PME (A) SOD, (B) CAT and (C) GPx enzymatic activities and expressions at 24h treatment.

Α

(Densitometry values are expressed relative to control and normalized against β -actin.

PME down-regulates CD36 expression

Effect of PME on (A) mRNA expression of *CD36* at 1 h and 24 h; (B) CD36 protein expression at (i) 1h and (ii) 24h(Densitometry values are expressed relative to control and normalized against β-actin.

Conclusion

 PME: Propensity to mitigate obesityrelated disorders

Diabetes estimates (20-79 years)	Mauritius	Reunion	Madagascar	Comoros	South Africa
% of diabetic population	18.3	13.0	1.5	3.6	4.2
Mean diabetes related expenditure (USD), per person	934.3	NA	111.4	152.2	1736.1

Acknowledgement

