

Use of lactic acid bacteria to increase antioxidant activities of fruits and tea beverages

<u>Amandine FESSARD</u>, Ashish KAPOOR, Theeshan BAHORUN, Emmanuel BOURDON, Fabienne REMIZE

Les 5èmes rencontres de l'agroalimentaire en Océan Indien – QualiREG 2016 28 novembre 2016 – 2 décembre 2016 IUT de Saint-Pierre, REUNION

CONTENTS

- 1. Introduction
- Anterials and methods
- 3. Results and discussion
 - 4. Conclusion
 - 5. Perspectives

Food, protection against oxydative stress-related diseases

Food antioxidants

Food processes

- Most fruits and vegetables are eaten after they have been transformed/processed
- → Physical and chemical changes could affect their antioxidant content
- → Most of the compounds are relatively unstable

- Transformation process can induce:
- Decrease of vitamins and polyphenol content (*pasteurization, blanching, cooking, sterilization...*)
- Modification of nutritional properties (preservatives and neoformed compounds)
- Improve antioxidant properties (Lactic acid fermentation)

Lactic acid fermentation of fruits

Lactic acid bacteria

Fruits carbohydrates

Homo-<mark>fermenta</mark>tive

Lactic acid

Hetero-fermentative Lactic acid + CO₂ + Ethanol

- <u>Lactic acid fermentation</u>
- → Food preservation (*safety, shelf-life*)
- → Modification of sensorial properties (*aromatic compounds*)
- → Removal of anti-nutritional factors (cyanogenic glucosides in cassava roots)
- Mineral and vitamin preservation
- Improvement of food digestibility
- Improvement of antioxidant properties (white cabbage, tomato, cherry, carrot and green beans smoothies)

Lactic acid fermentation of tea

• <u>Tea beverage</u>

- \rightarrow One of the most popular beverage worldwide, consumed by over 2/3 of the world's population daily
- → Rich in antioxidant : flavonoid, particularly tea catechins
- Lactic acid fermentation of tea
- → Tea flavonoids : low bioavailibility
- → Bioconversion of polyphenols possible by lactic acid bacteria
- → Increase of polyphenol bioavailibility and bioactivity
- Kombucha, a fermented tea beverage
- → Fermentation of green or black tea with sugar

Autochthonous starters for lactic acid fermentation

→ Autochthonous LAB starters: controlled and safe fermentation

Technological	Sensorial	Nutritionnal	
Growth rate	Hetero-fermentative	Synthesis of exo-	
Acidification rate	metabolism	polysaccharides	
Tolerance to salt	Synthesis of aromatic	No synthesis of biogenic	
Tolerance to low pH and low	compounds	amines	
temperature	Sensory properties	Increase of antioxidant	
Synthesis of antimicrobial		properties	
compounds		Depolymerization of phenolic	
Tolerance to bile salts		compounds	

Our objectives

1. Characterize the lactic acid bacterial flora present on fruits and vegetables grown in Reunion Island

2. Design new fermented food products from fruits and tea in order to keep/improve nutritional and antioxidant properties

Selection of LAB starters

Isolation of 82 LAB from papaya, tomato and sliced cabbage

Genetic, phenotypic and technological characterization

Selection of 29 LAB

Weissella spp

Leuconostoc spp

Fructobacillus spp

Lactobacillus spp

\rightarrow Ability of LAB to grow in apple juice

Black tea

Food substrates for lactic acid fermentation

Lactic acid fermentation of pineapple

Lactic acid fermentation of papaya

Lactic acid fermentation of green tea

82 LAB isolates

(Papaya, tomato, sliced cabbage)

Criteria of selection for starters

21 LAB isolates

Lactic acid fermentation

Pineapple juice	Papaya	Green tea	Black tea	Mango
<mark>5/8</mark> 12a, 21, 64: Weissella cibaria 56, DSM20193: Leuc. pseudomesenteroides	<mark>1/21</mark> 64: <i>W. cibaria</i>	<mark>2/21</mark> 1,5: <i>Leuc. mesenteroides</i>	0/21	0/21

- Majority of starters used in food insdustries are *Lactobacillus* species
- Weissella and Leuconotoc spp are rarely investigated
 - → Frequently isolated from fruits and vegetables
 - → Fast growth
 - → High acidifiying activity
 - → Produce EPS polymers
 - → Tolerent to a multitude of stresses
 - → Antioxidant activities
- Weissella and Leuconostoc spp as starters for fruit and tea fermentation ?

Acknowledgements

LA RECHERCHE AGRONOMIQUE POUR LE DÉVELOPPEMENT

ANDI CENTRE OF EXCELLENCE FOR BIOMEDICAL AND BIOMATERIALS RESEARCH